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Chapter 1

Introduction

Launched on board the Joint Polar Satellite System (JPSS) Suomi National Polar-orbiting Part-
nership (NPP) platform on 28 October 2011, the Cross-track Infrared Sounder (CrIS) and the
Advanced Technology Microwave Sounder (ATMS) represent the U.S. next generation of polar-
orbiting operational hyperspectral infrared/microwave (IR/MW) sounding systems (Goldberg et
al., 2013).

CrIS is a Fourier transform spectrometer (FTS) that measures calibrated infrared radiances
over 1305 channels covering the longwave (655-1095 cm−1), midwave (1210-1750 cm−1), and short-
wave (2155-2550 cm−1) infrared spectral regions. ATMS is a cross-track scanner with 22 channels
in spectral bands from 23 GHz through 183 GHz. These two instruments together represent the
latest addition to a long series of atmospheric satellite sounders that originated in the late 1970s
(http://www.ipo.noaa.gov). This suite of instruments has been designed to guarantee continuity
to the 1:30 am/pm equatorial crossing time orbit, in replacement of the AIRS/AMSU instruments
on board the NASA Aqua satellite and in conjunction with the European MetOp satellite series
operating the mid-morning orbit. Specifically, CrIS has been designed to continue the advances
in atmospheric observations and research that started with the Atmospheric Infrared Sounder
(AIRS) launched on the Aqua platform in 2002 (Aumann et al., 2003) and followed by the In-
frared Atmospheric Sounding Interferometer (IASI), launched on the MetOp-A platform in 2006
(http://smsc.cnes.fr/IASI/). ATMS will similarly continue the series of observations that started
with the Advanced Microwave Sounding Unit (AMSU) first launched by NOAA in 1998.

In this document we describe the algorithm theoretical basis of the NOAA Unique Combined
Atmospheric Processing System (NUCAPS), a heritage algorithm of the AIRS Science Team algo-
rithm (Susskind, Barnet, Blaisdell, 2003), in operations since 2002. The NOAA/NESDIS Center for
Satellite Applications and Research (STAR) implementation of this algorithm is a modular architec-
ture that was specifically designed to be compatible with multiple instruments: the same retrieval
algorithm and the same underlying spectroscopy are currently used to process the AIRS/AMSU
suite, the IASI/AMSU/MHS suite (operationally since 2008) and now the CrIS/ATMS suite (ap-
proved for operations in January 2013). The robustness of this system has allowed first light results
to be available at an early stage (6 months after launch) of the Suomi NPP post launch mission
(Gambacorta et al., 2012a, 2012b, 2012).

The NUCAPS suite of environmental data record (EDR) products includes two different files in
NetCDF format: the Standard Product and the Cloud-Cleared Radiance Product. The Standard
Product consists of retrieved estimates of hydrological variables such as temperature, water vapor,
cloud fraction and cloud top pressure, along with trace gas retrievals such as ozone, methane, carbon
monoxide, carbon dioxide, SO2, N2O, and HNO3, and a flag indicating the presence of dust and

1
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volcano emission. The vertical sampling of each retrieved atmospheric profile variable consists of
100 points total between 1100 hPa and 0.016 hPa; Intermediate solutions from the microwave only
step and the regression first guess are also part of the delivered standard output. Full spectrum
Cloud-Cleared Radiances are produced along with the Standard Product, as they are the radiances
used to retrieve the Standard Product. Both the Standard Product and the cloud-cleared radiance
file are generated at all locations where the atmospheric soundings are taken.

Each product file encompasses one granule of CrIS/ATMS data. Granules are formally defined
as the smallest cluster of data that is independently managed (i.e., described, inventoried, retriev-
able). A NUCAPS granule has been set as 32 seconds of data, corresponding to 4 scan lines of
CrIS/ATMS data. Each scans contains 32 Fields of Regard (FOR) viewed on the Earth’s surface
with a scan width of ±50◦. Each FOR contains a simultaneously measured 3 × 3 set of Fields of
View (FOVs). The CrIS FOVs are circular and have a diameter of 14 km at nadir. The UTC start
time of the N -th granule of each data is [146 + (N − 1) · 360]/3600 hours.

Granule products are operationally accessible to the science community in near real time (i.e
only a 3 hour delay from the raw data acquisition) through the CLASS environment. Detailed
information on the NUCAPS product requirements including content, format, latency and quality
can be found in the NUCAPS Requirements Allocation Document (RAD) (NESDIS/STAR, 2011)
which is available in the NUCAPS project artifact repository.

This document is divided into multiple chapters. Chapter 2 describes the attributes of the CrIS
and ATMS sensing system. Chapter 3 introduces a general description of the algorithm. Chapter
4 describes the algorithm inputs. Chapter 5 describes the microwave module component of the
algorithm. Chapter 6 describes the regression module for both the cloud clearing input profile
and the first guess. Chapter 7 is dedicated to cloud clearing. Chapter 8 describes the physical
and mathematical basis of the algorithm, along with the technical characteristics of the algorithm
processing flow. Finally, Chapter 9 details the formal validation methodology of the algorithm
EDRs.
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Chapter 2

Satellite Sensor Description

2.1 The Advanced Technology Microwave Sounder (ATMS)

The Advanced Technology Microwave Sounder (ATMS) is a cross-track scanner which combines all
the channels of the preceding AMSU-A1, AMSU-A2, and AMSU-B sensors into a single package
consisting of 22 channels in spectral bands from 23 GHz through 183 GHz. Channel 3–15 fall within
the 50–60 GHz portion of the oxygen band to temperature and precipitation information.

In addition, ATMS contains three window-channels at 23.8, 31.4, and 89 GHz to provide total
precipitable water, cloud liquid water content, and precipitation measurements, respectively. These
channels can also be used to provide information on sea-ice concentration and snow cover. ATMS
also has one window-channel at 166.31 GHz to obtain high-resolution measurements of precipitation,
snow cover, and sea-ice. Three additional channels in the 183 GHz water vapor line are used
to retrieve atmospheric humidity profiles. The 3-dB beam diameter of an ATMS FOV is 1.1,
corresponding to about 16 km at nadir. This beam is co-located with the CrIS field-of-view (FOV).
Table 2.1 describes the characteristics of the ATMS microwave sensor and of the AMSU/MHS suite.

The scanning geometry and footprint sizes of ATMS are somewhat different for every channel.
Channels 1 and 2 have a beam width of 5.2◦, which corresponds to a footprint size of 74.8 km at
nadir. Channels 3–16 have a beam width of 2.2 ◦, which corresponds to a footprint size of 31.6 km
at nadir. Channels 17–22 have a beam size of 1.1◦, which corresponds to a footprint size of 15.8 km.
Because the ATMS scans at a rate of 8/3 seconds per scan, the scan pattern overlaps, but does not
match exactly, the scan pattern of CrIS. The EDR algorithm assumes that the ATMS data will be
re-sampled to match the CrIS FOR configuration prior to ingestion by the CrIS software.

On 8 March 2017, NOAA transition from the SNPP Data Exploitation (NDE Block 1.2) system
to their new Product Distribution and Access (PDA Block 2.0) system. This transition involved
changes to the ATMS calibration algorithm, definition of ATMS noise characteristics as well as error
reduction due to Rayleigh-Jeans approximation, particularly for those channels with frequencies
greater than or equal to 89 GHz. Details about these implementations can be found in (Went et
al., 2013; F. Weng and X. Zou, 2013; Weng, 2015).

2.2 The Cross-Track Infrared Sounder (CrIS)

CrIS is one of the most advanced instruments onboard the NPP platform, measuring infrared
radiation emitted from the surface of the Earth. CrIS is a Fourier transform spectrometer (FTS)
with a total of 1305 infrared sounding channels covering the longwave (655–1095 cm−1), midwave
(1210–1750 cm−1), and shortwave (2155–2550 cm−1) IR spectral regions (LWIR, MWIR and SWIR,

4
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Table 2.1. Description of the Channel Characteristics of the ATMS and AMSU/MHS
Microwave Sensors (Weng et al., 2012)

respectively). The nominal spectral resolution is defined as 1/2L, where L is the maximum optical
path difference of the interferometer. Each band has different spectral resolutions. The frequency
range adopted in the current design of the CrIS instrument is listed in Table 1. Figure 2 shows
an example of simulated clear-sky radiances in the CrIS bands. The radiances are expressed in
brightness temperature units. The emission in the spectral region 650–800 cm−1 is mainly from
atmospheric CO2 and is used for atmospheric temperature sounding. The atmospheric window
region in LWIR extends from 800 to 950 cm−1 and provides sounding channels for the surface
properties and the lower troposphere temperatures. The main emission band of O3 is centered
around 1050 cm-1. The main emission in MWIR is due to atmospheric moisture, although there
are some contributions from methane and nitrous oxide near 1250 cm−1. MWIR contains most of
the CrIS atmospheric moisture sounding channels. The main feature in SWIR is the emission from
the 4.18 µm band of CO2 that is also used for atmospheric temperature sounding.

The previous operational SNPP NUCAPS version (v1.5) ran on CrIS spectra at the original
nominal spectral resolution spectra of ∆ν '0.625 cm−1, 1.25 cm−1 and 2.5 cm−1 for the LWIR,
MWIR and SWIR bands, respectively. The reduced resolution in the MWIR and SWIR bands is
the result of the interferograms being truncated in those bands during operational processing of
the SDRs. The reduction in spectral resolution in these bands was empirically demonstrated by
Gambacorta et al. (2014) to have an adverse impact upon trace gases, especially carbon monoxide.
Full-resolution CrIS (∆ν '0.625 cm−1 in all three bands) thus led to offline production of full-
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spectral resolution (full-res) CrIS SDRs beginning in December 2014 (Han et al., 2015). Additional
details of the CrIS design and measurement objectives are found in Han et al. (2013).
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Chapter 3

Algorithm Description

The NUCAPS algorithm consists of the following six modules as summarized below

1. A preliminary input quality control, look up tables and ancillary product acquisition

2. A microwave retrieval module which derives cloud liquid water flags and microwave surface
emissivity uncertainty (Rosenkranz, 2000);

3. A fast eigenvector regression retrieval for temperature and moisture that is trained against
ECMWF analysis and CrIS all sky radiances (Goldberg et al., 2003).

4. A cloud clearing module that combines a set of microwave and IR channels (along with,
in the future, visible observations provided by the onboard VIIRS instrument) to produce
cloud-cleared IR radiances (Chahine, 1974).

5. A second fast eigenvector regression retrieval for temperature and moisture that is trained
against ECMWF analysis and CrIS cloud cleared radiances (Goldberg et al., 2003).

6. The final infrared physical retrieval, which employs the previous regression retrieval as a first
guess (Susskind, Barnet, Blaisdell, 2003).

Figure 3 describes the complete flow diagram of the algorithm software architecture. The full
description of the attributes of all input data used by the algorithm, including primary sensor data,
ancillary data, forward models and look-up tables is provided in the next chapter.
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Figure 3.1: NUCAPS Level 2 processing flow chart



Chapter 4

Algorithm Inputs

4.1 Background Climatology Look Up Tables

A background climatology is available to all retrievals on a 2.5◦ Mercator grid using 100 levels.
Climatological profiles of temperature, water vapor (the TIGR ensemble, Chedin et al., 1985) are
used extensively in the MW-Only retrieval step is used to generate the covariance of the atmospheric
temperature and water vapor. Climatological profiles of trace gases are also used as first guess in
the physical retrieval step. The climatology is based on two sources: (1) the National Center
for Environmental Prediction (NCEP) temperature and water vapor monthly means derived from
the 20 year (1979–1998) reanalysis on a 2.5 degree Mercator latitude/longitude grid; and (2) the
Upper Atmosphere Research Satellite (UARS) temperature, water vapor and ozone profiles. The
climatological temperature profile is obtained from the NCEP source from the surface up to 100
hPa, tri-linearly interpolated by month, latitude and longitude and then log-pressure interpolated
onto the 100 levels. A P 4 extrapolation is used for altitudes above 100 hPa. The climatological
water vapor profile is derived from the NCEP source from the surface up to 300 hPa, tri-linearly
interpolated by month, latitude and longitude and then log-pressure interpolated onto the 100
levels. Above 300 hPa the information comes from the UARS source, linearly interpolated between
two latitude zones. The ozone climatology is derived from the UARS source, linearly interpolated
between two latitude zones. No time interpolation is computed.

The CO a priori is a 12 month set of two single CO profiles, for the northern and southern
hemisphere respectively, computed from the Measurements of Pollution In The Troposphere (MO-
PITT) version 4 CO monthly averages. These profiles are temporally and spatially interpolated
during the retrieval.

A first-guess CH4 profile (Xiong et al., 2008) as a function of latitude and altitude was generated
to capture its strong latitudinal and vertical gradients. This CH4 first-guess profile was generated
by using a nonlinear polynomial fitting to different data, including the in situ aircraft observation
data from six sites (the first six sites in Table 1) of the NOAA Earth System Research Laboratory,
Global Monitoring Division (ESRL/GMD), some ground-based flask network data (GLOBALVIEW-
CH4, 2005), Matsueda aircraft observation data (Matsueda and Inoue, 1996) and HALOE satellite
observation data (Park et al., 1996) (http://haloedata.larc.nasa.gov/download/index.php). In the
fitting only the mean profiles as a representative of its climatology for each location and altitude
were used. For example, for each NOAA/ESRL/GMD site only the mean of all profiles observed in
the past 3 years from 2003 to early 2006 was used. Matsueda aircraft data from GLOBALVIEW-
CH4 (2005) and HALOE data were interpolated to several latitudinal grids first, and then the
mean profiles corresponding to different latitude and altitude were used. Monthly average of model

9
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simulated data using the TM3 (Houweling et al., 2006) was used to extrapolate the in situ aircraft
data to higher altitudes. Over the southern hemisphere oceans where in situ measurements are not
available, yearly zonal mean profiles in several latitude grids from the TM3 model are also used.

The N2O climatology is given as a smoothed function of latitude and pressure. The generation
of N2O first-guess profile was from model data only. The model simulations are made by the Center
for Climate System Research/National Institute for Environmental Studies/Frontier Research Cen-
ter for Global Change (CCSR/NIES/FRCGC) using an Atmospheric General Circulation Model
(AGCM)-based chemistry transport model.

4.2 Local Angle Adjustment Coefficients

CrIS makes a 90-degree measurement, cross-track between -49 and +49◦. The data analysis, how-
ever, uses the data in 3x3 clusters with 30 scan angles between -49 and +49◦. A primary assumption
of cloud clearing is that within a 3x3 array of 9 CrIS FOVs the differences are solely attributed to
differences in clouds. Local angle adjustment removes one potentially confounding source of intra-
FOV variation: differences in observing geometry. In each 3x3 cluster there are 3 observations at
each of 3 different scan angles. This step makes small adjustments to the spectra for the 3 highest-
angle and 3 lowest-angle FOVs so all FOVs resemble those which would be observed at the central
angle. No adjustment is applied to the central FOVs. In the AIRS retrieval algorithm, the actual
adjustment is calculated using a PCs approach. Given the rotating scanning geometry of the CrIS
instrument a more complex solution needs to be taken and is the subject of a work in progress.
Unpublished studies have shown though that the local angle correction does not have significant
impact on the retrieval performance and can be neglected with no noticeably detrimental effects.

4.3 Forecast Surface Pressure

The AVN forecast surface pressure, PSurf, is used by the NUCAPS L2 retrieval. The surface
pressure is available on a one-degree grid. The surface pressure is calculated from the 3-,6-, and 9-
hour forecasts from the same model run, interpolated in space and time to match observed location.

4.4 Surface Spectral Emissivity First Guess

The surface spectral emissivity (SSE), εν , is critical for accurate determination of the surface energy
budget and it is a common input parameter for a variety of radiative transfer models (Zhou et al.,
2008). Due to the intrinsic characteristic differences between the oceanic and land surfaces, the
SSE alters substantially from place to place. In the oceanic areas, the surface characteristics are
more homogeneous, however the land surfaces are much more complex since the land surfaces can
be covered by sands, grasses, soil, trees, ice, man-made architectures et al. or their combinations.
Therefore, in the NUCAPS algorithm, the Masuda sea SSE model (Masuda et al., 1988; Masuda,
2006) is employed over ocean to estimate the SSE initial guess while a synthetic regression approach
is employed instead over land surfaces.

4.4.1 Training Data Set used for SSE First Guess Regression Over Land

The atmospheric profiles are based on the SeeBor Version 5.0 created by Eva Borbas and Suzanne
Wetzel Seemann, University of Wisconsin-Madison (Seemann et al., 2006)). The SeeBor Version 5.0
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consists of global profiles of temperature, moisture, and ozone at 101 pressure levels in the clear sky
condition. The total 15,704 profiles are taken from NOAA-88 (6137 profiles), an ECMWF 60-level
training set (6015 profiles), TIGR-3 (1387 profiles), ozonesondes from 8 NOAA Climate Monitoring
and Diagnostics Laboratory (CMDL) sites (1595 profiles), and radiosondes from the Sahara desert
in 2004 (570 profiles). To ensure the quality of the atmospheric states, the screen-out criteria are
set as: (1) the relative humidity (RH) value of the profiles must be less than 99% at each level
below 250 hPa, and (2) the top pressure of sounding measurements must be no greater than 30
hPa for temperature and water vapor profiles and 10 hPa for ozone profiles. For each profile in
the data set, the corresponding SSEs and surface skin temperature are added separately. The SSEs
are set at 39 hinge points (see Appendix List 1) based on random characterization simulations to
represent the SSEs of the whole spectra. The infrared emissivity of soil, tree and grass is obtained
from MODIS UCSB Emissivity Library (see Figure 4.1). There are 70 types of soils, 23 types of
trees and 7 types of grasses are included in the library. A random selection algorithm is applied to
estimate the surface composition fractions.

Figure 4.1: Typical emissivity spectra of snow, ice, distilled water, and sea water in TIR obtained at
the exitance angle 10 degree by past laboratory experiments reproduced from the ASTER Spectral
Library and from the MODIS University of California, Santa Barbara (USCB) Emissivity Library
(Wan and Zhang, 1999).

4.4.2 Methodology of SSE First Guess Regression Over Land

The total data set includes different surface types, e.g. land, ocean, ice/snow. But different surface
type behaviors very different in the spectra. The SSE regression training needs to be done separately
by different surface types. We distinguish land or ocean by the geolocation of the profile and
distinguish the warm land or ice/snow land by the surface temperature. The regression training is
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performed on the sub-datasets of warm land and ice/snow land, respectively. The predictors are
the brightness temperatures of m = 16 pre-selected CrIS window channels (see the Appendix List
2 and Figure 4.2) and the satellite view angle, ϑ, while the fitting vector is composed by the SSEs
of the n =39 hinge points and the surface skin temperature, Ts, as per the following equation

Ts
ε1
...
εn

 =


C0,0 C0,1 · · · C0,m

C1,0 C1,1 · · · C1,m
...

...
. . .

...
Cn,0 Cn,1 · · · Cn,m




TB(ν1)
...

TB(νm)
ϑ

 . (4.1)

The regression training is to solve the coefficients Cn,m of the above equation. To consolidate the
regression training, we add 1% random Gaussian distribution noises on the predictor vectors. For
each subset, we random select 90% profiles for training to generate the coefficients and the rest 10%
profiles are used for validate the training by applying the coefficients. Figures 4.3 and 4.4 show
the low bias and standard deviations for land and snow surfaces, respectively, which indicate the
regression training is robust.
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Figure 4.2: CrIS radiance spectrum with red asterisks showing the 16 pre-selected CrIS window
channels for the regression training: (top) LWIR, (bottom) MWIR.

4.5 Microwave and Infrared Tuning Coefficients

A large category of inversion algorithms relies on least square residual minimizations of observed
brightness temperature and brightness temperatures computed from first guess profiles. In these al-
gorithms, generally referred to as “physical,” radiative transfer calculations are performed by mean
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CrIS IR Emissivity Regression (Land)
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Figure 4.3: Regression bias and standard deviation over warm land.

of theoretical forward models and there is a need for identifying and removing those components
of the residuals arising from modeling, measurement errors and instrumental noise. This process,
commonly referred to as brightness temperature tuning, is fundamental to achieve retrieval per-
formance accuracy, in that it removes artificial systematic biases that could be otherwise ascribed
to a physical atmospheric source and, in long term applications, erroneously confused with climate
signals. Specifically, forward model errors may include both systematic and profile-dependent com-
ponents. Systematic errors may include radiometric calibration, thermal emission from parts of the
space-craft, and, for microwave sensors, antenna side lobe effects. These systematic sources of error
can contribute to a large part of the overall bias and in the microwave case show dependence on
view angle and slightly on the temperature profile.

4.5.1 Microwave

Using forward model computations, a tuning coefficient set is computed as an average bias difference
of a global sample of observed minus computations (OBS − CALC), for each channel and in the
microwave case, scan angle position (for ATMS there are 96 consecutive acquisitions per scanline).
In reality, we limit the collection of OBS − CALC samples over a restricted area of the globe, which
only includes open ocean, clear sky, day-time and non-high latitude areas, where the collection of
correlative “truth” profiles is relatively more reliable. Specifically, the sub-field of view variability is
usually higher over land, coastal and broken cloud scenarios, as opposed to the more uniform open
ocean and clear sky conditions, hence our choice to restrict the tuning training sample to the more
uniform ocean-only and clear-sky areas of the globe. The selection of non precipitating cases is also



Chapter 4: Algorithm Inputs NUCAPS ATBD Version 2.0 August 14, 2017 14

CrIS IR Emissivity Regression (Snow)
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Figure 4.4: Regression bias and standard deviation over ice/snow land.

dictated by the fact that microwave forward models, in general, do not handle precipitation.
Besides sampling errors, measurement errors can also represent a significant source of uncer-

tainty in the truth. This is the case for high latitude and daytime atmospheric measurements,
whether performed by mean of in situ acquisitions (radiosondes) or independent retrievals and
re-analyses. Specifically, truth profiles collected over high latitude regimes by mean of Vaisala ra-
diosondes tend to suffer from temperature dependent errors (the colder the temperature, the larger
the error) in the form of a significant dry bias in the relative humidity measurements. Furthermore,
radiosonde daytime measurements suffer from so called solar arm heating (SAH) errors, originated
by radiative heating of the temperature and humidity sensor prior to launch, and resulting in a
higher temperature and drier humidity measurements. It has been observed that a temperature
difference of 1 degree Celsius between the ambient and the sensor arm corresponds to 4% SAH
error in relative humidity. Alternative measurements, such as independent infrared retrievals or re-
analyses, suffer from high latitude low signal to noise temperature gradients, besides being subject
to large uncertainties in snow/ice infrared emissivity, daytime non local thermodynamic equilib-
rium and solar reflectivity parameterization. These measurement uncertainties in daytime and cold
conditions dictate the necessity to further limit our sampling selection to nighttime and tropical to
mid latitude regions only. The ATMS bias tuning is shown in Figure 4.5 as a function of view angle
for both ATMS/TDR Block 1.0 and 2.0. This is basically the bias found between the ATMS obser-
vations and the calculated or synthetic brightness temperatures derived using a rapid atmospheric
transmittance algorithm (RTA) or forward model (Rosenkranz, 1995) and ECMWF over restricted
areas of the globe where the effects of land, Polar Regions and precipitation conditions have been re-
moved. Significant differences between Block 1.0 and Block 2.0 bias corrections are observed, mostly
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associated to a better noise characterization, better instrument calibration and the bias reduction
from Rayleigh-Jeans approximation. Figure 4.6 shows the standard deviation of the observed and
calculated ATMS brightness temperatures, which is used in the NUCAPS microwave-only retrieval
to define the RTA error. Here, it is observed that windows channels at 88.2 and 165.50 GHz show
the largest errors, most probably associated to the surface or near surface inhomogeneity.

Figure 4.5: ATMS bias tuning correction for channels 1–22, as a function of view angle. Results
show the actual bias correction for the ATMS/TDR Block 1.0, and the most recent correction made
for ATMS/TDR Block 2.0.

4.5.2 Infrared

To correct the IR Radiative Transfer Algorithm (RTA) bias, a set of true cloud-free radiances and
the corresponding truths of the atmospheric states, surface parameters are required. We select cases
from four arbitrary focus days which meet the requirements. The four focus days are 20 December
2014, 17 February 2015, 21 March 2015, and 9 June 2015. The data sources that we use for this
work are CrIS full spectral IR radiances (converted to brightness temperature), the Visible Infrared
Imaging Radiometer Suite (VIIRS) cloud mask products, VIIRS M15 images, ECMWF numeri-
cal models, MOPITT CO retrievals and Japan Agency for Marine-Earth Science and Technology
(JAMSTEC) trace gas numerical model profiles (including CH4 and CO2). To insure the cloud-free
requirements, we precisely collocate the geolocation coordinates of CrIS and VIIRS (see Figure 4.7).



Chapter 4: Algorithm Inputs NUCAPS ATBD Version 2.0 August 14, 2017 16

Figure 4.6: ATMS RTA error for channels 1–22. Results show the actual RTA error for the
ATMS/TDR Block 1.0, and the most recent correction made for ATMS/TDR Block 2.0.

First, the VIIRS cloud mask intermediate products are applied to select CrIS field of regards (FORs)
with at least one clear CrIS field of view (FOV) that is confidently tested and validated without
cloud contamination. Secondly, we multiply the VIIRS channel M15 spectral response function on
the CrIS full spectral radiances measured by the clear CrIS FOV to reconstruct M15 radiances.
Only those cases that the standard deviation of M15 brightness temperature within the clear CrIS
FOV less than 0.3 K and the difference between the mean M15 observed brightness temperature and
reconstructed M15 brightness temperature less than 1 K are considered as a candidate. As for the
constraints of the atmospheric profile domain, we select cases that meet the following requirements:

1. the latitude should be within ±60◦

2. the footprint should anchor at ocean areas

3. the observation should be nighttime

The components of the atmospheric state “truths” are the combinations of the following

1. temperature, water vapor and ozone profiles and surface temperature, surface parameters from
collocated ECMWF numerical model, including analysis and 3-hour forecast data

2. collocated CH4 and CO2 profiles are from JAMSTEC models

3. collocated CO profiles are from MOPITT retrievals

The composed profiles are ingested in to the SARTA forward model to simulate CrIS clear radiances.
After the simulation, further criteria are used to screen out the outliers, those are the differences
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between simulated radiances (converted to brightness temperature) and observed radiances (con-
verted to brightness temperature) at certain channels, e.g. 900, 751, 757, 784, 1040, 1429, 1491,
1616, 2499 and 2503 cm−1, must less than 1.5 K. Based on all the requirements, there are total
2217 cases selected for IR RTA bias corrections. The channel RTA biases and standard deviations
are shown in Figures 4.8 and 4.9, respectively.

Figure 4.7: The collocation of CrIS FOVs and VIIRS pixels. The red circles (or ovals) represents
the CrIS FOVs and the pixel dots are VIIRS pixels (blue: cloudy; yellow: probably cloudy; grey
circles: clear). The upper panel shows the one single CrIS scan line. The lower left shows the 11th
CrIS FOR of the particular scan line. The lower right even zooms in to show the 2nd FOV of the
particular FOR.

4.6 Radiative Transfer Model

The physical retrieval methodology utilized by the NUCAPS depends on the ability to accurately
and rapidly calculate the outgoing radiance based on the state of the surface and the atmosphere.
The radiative transfer model consists of a parameterized algorithm to compute atmospheric trans-
mittance, a model for surface brightness temperature, and a model for the reflected downwelling
atmospheric emission. The following sections discuss the microwave and infrared radiative transfer
models and error estimates.

4.6.1 Radiative Transfer Model of the Atmosphere in the Microwave

At the frequencies measured by ATMS, the most important absorbing gases in the atmosphere are
oxygen and water vapor. The oxygen molecule has only a magnetic dipole moment, and its lines are
intrinsically much weaker than those which result from the electric dipole of water vapor; however,
the much greater abundance of oxygen in the atmosphere more than compensates for this difference.
When clouds are present, liquid water also plays a role in radiative transfer. However, fair-weather
cirrus composed of ice particles small compared to the wavelength are generally transparent to the
ATMS frequencies.
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Figure 4.8: The CrIS full spectral-resolution (FSR) RTA bias versus nominal spectral-resolution
(NSR) RTA bias. The blue shows the FSR RTA bias and the red shows the NSR RTA bias.

Oxygen

O2 spin-rotation transitions comprise approximately 30 lines between 50 and 70 GHz and an isolated
line at 118.75 GHz (which is not observed by AMSU or HSB). Several groups have measured the
pressure-broadened widths of the lines in the 50-70 GHz band. The line parameters used for the
forward model are from the Millimeter-wave Propagation Model (MPM92) (Liebe, et al., 1992).
The characteristic of oxygen’s microwave spectrum that introduces difficulty for construction of
models is the significant degree of line mixing. In MPM92, line mixing was treated by a first-order
expansion in pressure. The coefficients for this expansion were determined by a constrained linear
fit to laboratory measurements made on an O2-N2 mixture over the frequency range of 49-67 GHz
and the temperature range 279–327 K, with a noise level of approximately 0.06 dB/km. Within
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Figure 4.9: The CrIS FSR RTA error (standard deviation) versus NSR RTA error. The blue shows
the FSR RTA error and the red shows the NSR RTA error.

that range, the model represents the measurements to 0.2 dB/km. It is possible that extrapolation
to colder temperatures introduces larger errors. Measurements from the NASA ER-2 at 52-56 GHz
(Schwartz, 1997) seem to be in agreement with the model, however.

Water Vapor

Water has a weak rotational line at 22.23 GHz that is semi-transparent at normal atmospheric
humidity, and a much stronger, opaque line at 183.31 GHz. Intensities of these lines have been
calculated and tabulated by Poynter and Pickett (1996 version of JPL line catalog) and Rothman
et al., (1998) (HITRAN), among others. The HITRAN intensities are used here. For the 22-GHz
line, the JPL intensity is higher than the HITRAN value by 0.3%. There is a measurement by Liebe
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et al., (1969) (estimated error 0.3%) which is 3.5% lower than the HITRAN value. At 183 GHz,
the JPL line intensity is 0.1% higher than HITRAN. Widths have been measured by Liebe et al.,
(1969) and Liebe and Dillon (1969) at 22 GHz with estimated uncertainty of 1% for both self and
foreign-gas broadening; and by Bauer et al., (1989) and Tretyakov et al. (2003) at 183GHz, with
uncertainties of 0.5% for self-broadening and 1.0% for foreign-gas broadening, respectively. However,
Gamache et al. (1994) concluded from a survey of measurements of many H2O lines that, in general,
measured line widths should be considered to have uncertainties of 10-15%. The line at 183 GHz is
a case in which published measurements of width differ significantly, but the value of Tretyakov et
al. (2003), which is used here, lies near the centroid of the measurements. At frequencies away from
these two lines, microwave absorption by water vapor is predominantly from the continuum, which
is attributed to the low-frequency wing of the intense infrared and submillimeter rotational band
lines. In the microwave part of the spectrum, the foreign-broadened component of the continuum
is stronger than the self-broadened component, for atmospheric mixing ratios. Measurements of
continuum absorption as a function of temperature have been made at various frequencies by Liebe
and Layton (1987), Godon, et al. (1992) and Bauer et al. (1993, 1995). There are also numerous
measurements at single temperatures and frequencies in the laboratory, and in the atmosphere
where temperature and mixing ratio are variable. The measurements do not present an entirely
consistent picture. Rosenkranz (1998) proposed that the most satisfactory overall agreement with
laboratory and atmospheric measurements of the water continuum was obtained with a combination
of the foreign-broadened component from MPM87 (Liebe and Layton, 1987) with the self-broadened
component from MPM93 (Liebe et al., 1993). The combined model is used here.

Liquid Water

It is useful to distinguish between precipitating and non-precipitating clouds with respect to their
interactions with microwaves. Over the range of wavelengths measured by ATMS, non-precipitating
droplets (with diameters of 50 m or less) can be treated using the Rayleigh small-droplet approxima-
tion. In this regime, absorption is proportional to the liquid water content of the air, and scattering
can be neglected. The model for the dielectric constant limits the accuracy of these calculations.
The double- Debye model of Liebe et al., (1991) is used here; for temperatures > 0◦C, it has an
estimated maximum prediction error of 3% between 5 and 100 GHz, and 10% up to 1 THz. Al-
though some measurements of static dielectric constant at temperatures as low as −20 C were used
by Liebe et al. to develop their model, its use for supercooled water must be considered to be an
extrapolation, with uncertain accuracy. (The model is implemented using the alternate Eq. 2b in
Liebe et al.) Precipitation, on the other hand, requires Mie theory to calculate both absorption and
scattering. The latter is generally not negligible, and is the dominant term at some wavelengths.
In the case of convective storms, scattering from ice at high altitudes is often the most important
process. The rapid transmittance algorithm uses only the small-droplet approximation for cloud
liquid water, and scattering is not included. For this reason, retrieved profiles with more than 0.5
kg/m2 cloud liquid water are rejected, as probably rain-contaminated.

The microwave rapid transmittance algorithm

The modeled brightness temperature Tb received by a space born microwave radiometer over a
smooth surface with emissivity ε may be expressed as

TB =
1

ω

∫ ∞
0

H(ν) dν

∫ Ps

0
−T (P )

∂τν(0, P )

∂P
dP
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+ ε τν(0, Ps)Ts + (1− ε) τν(0, Ps)

∫ Ps

0
−T (P )

∂τν(Ps, P )

∂P
dP

+ (1− ε) τν(0, Ps)
2 Tcb

(4.2)

where H(ν) represents the passband of the radiometer channel of frequency ν, ω is the spectral total
width of the passband, τν(P1, P2) is the transmittance at frequency ν between the pressure levels
P1 and P2, T (P ) is the atmospheric temperature at level P, Ts and Ps are surface temperature and
pressure, and Tbc is the cosmic background brightness temperature.

Near real time operations require rapid data processing which precludes the use of a line-by-
line transmittance model. The rapid algorithm employed in this study and operationally used at
NOAA/NESDIS to process the ATMS, AMSU-A and MHS instruments is the microwave rapid
transmittance algorithm developed by Rosenkranz (1995, 2003) and later validated by Rosenkranz
(2006). In this rapid algorithm, the integration over frequency in (1) is replaced by a passband-
averaged transmittance 〈τ(0, P )〉. The average transmittance between two adjacent pressure levels,
P1 and P2, is computed as:

〈τ(P1, P2)〉 = e−(α+βV+γL) (4.3)

where V is the vertical column density integral of water vapor between the two levels and L is the
cloud liquid vertical column density integral; α represents the opacity of fixed gases (oxygen and
nitrogen) in the layer. The coefficients α, β and γ are computed for each layer and channel, given
the inputs of V, temperature, pressure and secant of observation angle. Window channels, water
vapor channels and oxygen-band channels are considered separately. Each band employs tabular
or polynomial approximations to line-wing or near-line absorption from water vapor or oxygen.
Absorption by cloud liquid water and ozone is also included. For a complete description of the
derivation of α, γ and β the reader can refer to Rosenkranz (1995, 2003).

For oxygen-band channels sounding the atmosphere above 40km, Zeeman splitting produced
by the terrestrial magnetic field becomes important. For those channels, transmittance is param-
eterized as a function of the magnetic field strength B and the angle ΘB between the direction of
propagation and the magnetic field. Rosenkranz (1995, 2003) also provide an in depth description
of the transmittance parametrization in presence of Zeeman splitting.

Transmittances are computed for 101 layers between 0.5 and 1100 hPa, chosen with approxi-
mately even spacing on P 2/7. The total transmittance is derived as the product of transmittances
(2) for each of those layers. This total transmittance, 〈τ(0, Ps)〉, is then used in a simplified form
of the radiative transfer equation expressed by:

TB = T direct
B + 〈τ(0, Ps)〉

[
T sfc
B + T sky

B

(
1− T sfc

B
Ts

)]
(4.4)

T direct
B represents the simplified version of direct path from surface footprint to satellite:

T direct
B =

∫ 0

Ps

T (P ) d〈τ(0, P )〉 (4.5)

T sfc
B is the surface brightness temperature given by the product between the surface emissivity

and the skin temperature Ts, and T sky
B is the downward propagating sky brightness temperature
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(including the cosmic background contribution, Tcb) as it would be observed from the surface and
represented by:

T sky
B =

∫ Ps

0
T (P ) d〈τ(P, Ps)〉+ Tcb 〈τ(0, Ps)〉 (4.6)

Planck’s equation for radiant intensity is a nonlinear function of temperature. For microwave
frequencies, however, the physical temperatures encountered in the earth’s atmosphere lie at the
high-temperature asymptote of this function. Hence, as discussed by Janssen (1993), brightness
temperature can be used as a surrogate for radiance in the equation of radiative transfer with an
accuracy of a few hundredths of a Kelvin, provided that the cosmic background is assigned an
effective brightness temperature at frequency of

Tcb =
hν

2K
· exp(hν/KTc) + 1

exp(hν/KTc)− 1
(4.7)

instead of its actual temperature Tc = 2.73K, in order to linearize the Planck’s function.
It has been shown that this rapid transmittance model requires thirty times less computation

than a line-by-line algorithm with an accuracy comparable to or better than the channel sensitivities.

Surface emissivity model for open ocean

The ocean surface emissivity for frequency ν, ε(ν) for a flat surface at local thermodynamical
equilibrium is defined by:

ε(ν) = 1−Rp (4.8)

where p is the polarization of the signal, horizontal (H) or vertical (V), and Rp is the square of the
Fresnel reflection coefficient for polarization p, defined as:

RH =

∣∣∣∣∣cos θza −
√
e− sin2 θza

cos θza +
√
e− sin2 θza

∣∣∣∣∣
2

(4.9)

RV =

∣∣∣∣∣e cos θza −
√
e− sin2 θza

e cos θza +
√
e− sin2 θza

∣∣∣∣∣
2

(4.10)

In these equations, e is the dielectric permittivity of saline water. We employ a revised Debye
model, the Double Debye model, which is obtained as a linear fit of experimental data for synthetic
seawater and at seven different temperatures representative of the world’s oceans, in the frequency
range 3–105 GHz. An extrapolation is being used for higher frequencies.

The ATMS radiometer front-end scanning optics are of a rotating reflector and fixed feedhorn
type design. With this configuration, the polarization vector rotates with the cross-track scanning
reflector. As a result, at any beam position making an angle θ with respect to nadir, the received
polarization is a linear combination of the vertical and horizontal polarization vectors.

ATMS channels 1 (23.8 GHz), 2 (31.4GHz) and 16 (88.2GHz) are vertically polarized (perpen-
dicular to the ground track) at nadir and generally quasi-vertically polarized at any other viewing
angle θva. All other ATMS channels are quasi-horizontally polarized and fully horizontally polarized
at nadir (polarization vector parallel to the ground track). The surface emissivity for quasi-vertical
and quasi-horizontal polarized channels can be expressed respectively as:

εV (ν) = (1−RV ) cos2 θva + (1−RH) sin2 θva , (4.11)
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and
εH(ν) = (1−RV ) sin2 θva + (1−RH) cos2 θva . (4.12)

4.6.2 Radiative Transfer Model of the Atmosphere in the Infrared

The total monochromatic radiance, R(ν, θ,X), at frequency ν, zenith angle θ, for an atmosphere
with geophysical state, X, emerging from the top of the atmosphere can be broken into the following
components

R(ν, θ,X) = Rs(ν, θ,X) , surface

+ Ra(ν, θ,X) , atmospheric column

+ Rd(ν, θ, θ
′, X) , atmospheric downwelling

+ R�(ν, θ, θ�, X) , reflected solar (4.13)

Specifically, Rs(ν, θ,X) is the contribution due to the surface radiance, averaged over the foot-

print, attenuated by the atmospheric column of the observation. Ra(ν, θ,X) =
NL∑
L=1

RL(ν, θ) is the

sum of all the contributions RL(ν, θ) from all the layers within the IFOV. Rd(ν, θ,X) is the con-
tribution due to the downwelling radiation from the entire atmospheric volume reflected by the
surface and transmitted through the observed atmospheric column. R�(ν, θ, θ�, ρ�, X) accounts
for the transmission of sunlight from the TOA through the atmosphere at angle θ�, reflected from
the surface, and transmitted out of the atmosphere at angle θ to the spacecraft.

Since the Planck function is linear in the microwave region, Eq. (4.13) can be written in terms
of brightness temperatures as well

TB(ν, θ) = TBs(ν, θ) + TBa(ν, θ) + TBd(ν, θ) + TB�(ν, θ) . (4.14)

Radiance contribution from the surface

The radiance emerging at the top of the atmosphere is given by the contributions from the surface
and attenuated by the atmospheric transmittance. We will begin by considering only the radiation
upwelling from the surface emission.

The component of out-going radiance from the surface is given by a black-body radiance at the
surface skin temperature, Ts, multiplied by the surface emissivity, εν .

The surface radiance must pass through the entire atmosphere and is, therefore, multiplied
by the column transmittance from the surface to the top of the atmosphere. The monochromatic
out-going surface radiance is given by

Rs(ν, θ) = εν Bν(Ts) τ
↑
ν (Ps, θ) (4.15)

where we employ a short hand notation for the surface to space transmittance

τ↑ν (Ps, θ) ≡ τν(Ps → 0, θ) (4.16)

The monochromatic brightness temperature equation for the surface contribution is given by

TBs(ν, θ) = εν Ts τ
↑
ν (Ps, θ) (4.17)
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and the channel averaged equation for the surface contribution is given by

TBs(n, θ) = εn Ts τ
↑
n(Ps, θ) (4.18)

The surface component, Rs, is given as

Rs(ν, θ) = εν Bν(Ts) τ
↑
ν (Ps, X, θ) , (4.19)

where εν is the spectral surface emissivity, Bν(T ) is the Planck function, Bν(T ), which is the specific
intensity (brightness) of a blackbody emitter given by

Bν(T ) =
α1 ν

3

exp(α2 ν
T )− 1

(4.20)

and τ↑ν (Ps, X, θ) is the transmittance of the atmosphere from the surface, at pressure Ps to the
instrument.

Radiance contribution from the atmosphere

For a thin layer of the atmosphere, defined between pressure layers at p(L) and p(L − 1), the
monochromatic radiance contribution at the top of the atmosphere from the atmospheric layer is
analogous to the surface radiance and is given by

RL(ν) = ELBν(TL) τν(pL−1 → 0, θ)

= [1− τν(pL → pL−1, θ)]Bν(TL) τν(pL−1 → 0, θ)

= Bν(TL) [τν(pL−1 → 0, θ)− τν(pL → 0, θ)]

= Bν(TL) ∆τ↑ν,L(θ) , (4.21)

where
∆τ↑ν,L(θ) ≡ τν(pL−1 → 0, θ)− τν(pL → 0, θ) . (4.22)

The term E ≡ 1 − τν(pL → pL−1, θ) in Eq. (4.21) constitutes an effective emissivity of the layer.
When the layer is opaque the gas emits as a blackbody; however, when completely transmissive
(i.e., τν = 1), there is no emission contribution from that layer.

The proper derivation begins with the equation of radiation transfer (e.g., see Chandrasekar,
1960 or Mihalis, 1978),

∂Rν
∂φν

=
1

µ
(Sν −Rν) (4.23)

For an atmosphere in local thermal equilibrium with no scattering the radiation source function,
Sν = Bν(T ), can be described by the Planck function. The radiative transfer equation (e.g., see
Mihalis 1978 pg. 38) is a function of the optical depth, φν , and the cosine of the zenith angle, µ,

∂Rν
∂φν

=
1

µ
(Bν −Rν) (4.24)

We can find an integration factor to obtain

∂Rν
∂φν

e−φν/µ =
Bν(T )

µ
e−φν/µ − Rν

µ
e−φν/µ (4.25)

∂
(
Rν e

−φν/µ
)

∂φν
=

Bν(T )

µ
e−φν/µ (4.26)
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And then the equation can be integrated directly. The integration constant is the boundary condi-
tion, which is the surface term discussed earlier.

Rν =

∫ 0

∞

1

µ
Bν [T (z)] e−φν/µ dφ (4.27)

We may change the integration parameter from optical depth, φ, to either altitude, z, or
pressure, p and obtain:

e−φν/µ
dφ

µ
=

∂τν
∂z

dz =
∂τν
∂p

dp (4.28)

so that

Rν =

∫ ∞
0

Bν [T (z)]
∂τν
∂z

dz (4.29)

The atmospheric radiance component, Ra, is the vertical integral of the Planck radiance as seen
through the level to space transmittance

Ra(ν, θ) =

0∫
Ps

Bν [T (p)]
∂τ↑ν (p,X, θ)

∂p
dp (4.30)

In remote sounding the contribution of a single channel usually comes from a narrow vertical
region in which τ ' 1

2 . For discrete radiative transfer algorithms the total contribution from the
atmosphere is given by the sum of the individual layer contributions over the entire isobaric grid

Ra(ν) =

NL∑
L=1

RL(n) =

NL∑
L=1

Bν(TL) ∆τ↑ν,L(θ) . (4.31)

In the microwave we can utilize the Rayleigh-Jeans approximation for write the total contribution
from the atmospheric column in terms of microwave brightness temperature, TB,

TBa(ν) =

NL∑
L=1

TB,L(ν) =

NL∑
L=1

TL ∆τ↑ν,L(θ) . (4.32)

In the microwave spectrum used for remote sounding the channel averaged transmittance can
be utilized because the spectral characteristics of the species used for sounding (O2 and H2) do not
interact with inferring species such as water. This simplifies the atmospheric radiance computation
and makes the radiative transfer equation much more linear

TBa(n) =

NL∑
L=1

TB,L(n) =

NL∑
L=1

TL ∆τ↑n,L(θ) . (4.33)

Solar Reflected Component

In a non-scattering atmosphere sunlight is absorbed by the atmospheric particles. We utilize the
radiative transfer equation (4.23) with the boundary condition (integration constant) equal to the
solar radiance at the top of the atmosphere. The solar energy propagates down to the surface at
which point it is reflected into the view of the satellite

R� = ρ�(ν, θ, θ�) τ↓↑ν (ps, X, θ, θ�) Ω(t)H�(ν) cos(θ), , (4.34)
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where H� is the solar radiance outside the Earth’s atmosphere. The reflected solar component
requires computation of the transmittance along the bi-directional path from the sun to the surface,
ps, and back to the spacecraft. For channel radiances the bi-directional transmittance is not equal
to the product of the downwelling and upwelling transmittances∫

τ↓↑ν (ps, X, θ, θ�) dν 6=
∫
τ↓ν (ps, X, θ�) dν ·

∫
τ↑ν (ps, X, θ) dν (4.35)

Ω is the solid angle, given in terms of the Sun’s radius and distance. It varies by ± 3.4% over the

year. Ω(t) = π ·
(

0.6951·109

D�(t)

)2
≈ 6.79 · 10−5 − 0.23 · 10−5 · cos(2π(t − t0)/ty) where, t is the time of

year, ty is the time the Earth takes to complete 1 orbit (365.25 days), and t0 is the perihelion date
(January 4 or t0=4). The solar surface reflectivity, ρ�, is a function of surface type, zenith angle,
solar zenith angle, azimuth angle, and wavenumber.

Monochromatic Downwelling Thermal Component

The radiation from an atmospheric layer at p(L) emits radiation in all directions. Some of that
radiation reflects off the surface and into the solid angle of observation. The downwelling term
requires integration over all zenith angles, θ′, and azimuthal angles, α, and all levels.

Rd(ν, θ) = τ↑ν (Ps, X, θ)

∫ 2π

α=0

∫ π
2

θ′=0
ρν(θ, θ′, α) sin(θ′) cos(θ′) dθ′ dα

·
∫ 0

Ps

Bν [T (p)]
∂τ↓ν (p,X, θ′)

∂p
dp , (4.36)

where the thermal reflectivity, ρν(θ, θ′, α), is usually a small number ' 1
π (1 − εν) (except over

ocean in SWIR and the microwave). Effectively, there is a product of up-welling and downwelling
transmittance so that this term is only important in channels in which the transmittance is ≈ 1

2 .
The short hand notation for the surface to space transmittance (Eq. 4.16) has been employed and
a short hand notation for the downwelling layer transmittance is

∆τ↓ν (L, θ′) ≡ τν [p(L− 1)→ p(L), θ′] (4.37)

= τν [p(L− 1)→ Ps, θ
′]− τν [p(L)→ Ps, θ

′] . (4.38)

But the monochromatic downwelling transmissivity is related to the upwelling transmissivity
by

τν [p(L)→ Ps, θ
′
ν ] =

τν(Ps → 0, θ′ν)

τν [p(L)→ 0, θ′ν ]
(4.39)

so that

∆τ↓ν (L, θ′ν) =
τν(Ps → 0, θ′ν)

τν(p(L)→ 0, θ′ν)
− τν(Ps → 0, θ′ν)

τν(p(L− 1)→ 0, θ′ν)
(4.40)

Also, since the lines are resolved and not overlapping the channel averaged downwelling transmit-
tance can be written in terms of the upwelling level-to-space channel averaged transmittances in
the form shown in Eq. (4.40)

The order of integration can be changed in Eq. (4.36) as

Rd(ν, θ) = τ↑ν (Ps, X, θ)

∫ 0

Ps

Bν [T (p)]
∂τ↓ν (p,X, θ′)

∂p
dp

·
∫ 2π

0

∫ π
2

0
ρν(θ, θ′, α) sin(θ′) cos(θ′) dθ′ dα . (4.41)
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Infrared Downwelling Term

The infrared downwelling term has felt by anyone who has stood out on a warm humid day. The
warmth of the hot atmosphere can be larger than the direct solar radiation in the mid- to far-
infrared. For an upwelling instrument or in-situ instrument the thermal downwelling integral must
be computed properly.

For a space-borne measurement only certain channels will have a measurable thermal down-
welling radiation and even those channels the effect is still small. Many approximations are employed
given that

• the surface reflectivity, ρ, is a small number, usually only a few %

• τ↑
∫
τ↓ is important only when τ ' 1

2 because when the atmosphere is opaque (τ → 0)
the surface term vanishes can we cannot “see” the downwelling and when the atmosphere is
transmissive (τ → 1) there is little downwelling radiance

• α and θ′ can be approximated by an effective diffusive angle by the mean value theorem

• Usually the dependence on azimuthal angle is small the integral with respect to
∫ 2π

0 dα can
be replaced by 2π

It is first assumed that the thermal reflectivity may be represented by a mean value so that Eq.
(4.36) can be written as

Rd(ν, θ) ' τ↑ν (Ps, X, θ) ρ(ν, θ)π R↓ν (4.42)

The factor of π arises by assuming azimuthal symmetry,
∫
dα = 2π and assuming we can

represent the integral of zenith angle by a diffusive term
∫

cos(θ) sin(θ)dθ = 1
2 . In Kornfield and

Susskind (Mon. Wea. Review, 105, 1977, p. 1605) the downwelling term is shown to be simplified
as follows. First, we can insert the surface radiance into the integral

R↓ν =

∫ 1

τ(Ps)
Bν(T ) dτ↓ =

∫ 1

τ(Ps)
Bν(Ts) dτ

↓ +

∫ 1

τ(Ps)
[Bν(T )−Bν(Ts)] dτ

↓ (4.43)

the left hand integral can be written exactly

R↓ν = Bν(Ts)
[
1− τ↓ν (Ps)

]
+

∫ 1

τ(Ps)
[Bν(T )−Bν(Ts)] dτ

↓ (4.44)

Most of the absorption takes place very low in the atmosphere, say in the lowest 150 hPa (i.e.,
between 1000 and 850 hPa) and Bν(τ)−Bν(Ts) is a slowly varying function, therefore, the integral
is adequately represented by the mean value theorem

R↓ν ' Bν(Ts)
[
1− τ↓ν (Ps)

]
+Bν(T )−Bν(Ts)

[
1− τ↓ν (Ps)

]
(4.45)

where Bν −Bν(Ts) is the mean difference between atmospheric Planck function and the surface
Planck function over the range of most absorption. This equation can be re-written in the form of

R↓ν ' Fν Bν(Ts)
[
1− τ↓ν (Ps)

]
, where Fν ≡ 1 +

Bν −Bν(Ts)

Bν(Ts)
. (4.46)

Fν differs from unity to the extent that the mean value of the atmospheric Planck function differs
from the surface Planck function.
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Now it is seen that monochromatic downwelling radiance is a function of the product of τ · (1−
τ). The maximum thermal downwelling radiation will occur when τ ≈ 1

2 . For channel averaged
transmittances this is not necessarily true as illustrated in the Fig. ??. In the top example the
transmittance is constant across the channel integration whereas in the bottom example the channel
is a mixture of opaque and transmissive components. In the top case, τ · (1− τ) is simply equal to
1
4 , as expected. But in the bottom case τ is zero everywhere where 1− τ is unity and vice-a-versa.
Therefore, the product is zero.

Therefore, the calculation of τ (1 − τ) needs to be done in a channel averaged sense; however,
we will show shortly that this usually introduces a small error. Given that the entire downwelling
radiance is small at the spacecraft the error is tolerable. We can assume that the integral of the
monochromatic product of τ is related to the channel averaged product with a correlation factor,
and this will be absorbed into the Fν factor. Inserting Eq. (4.46) into Eq. (4.42) yields

Rd(ν, θ) = πρν(θ, θ̄i)Bν(Ts)Fν τν(ps, θ)
[
1− τν(ps, θ̄)

]
(4.47)

A better fitting equation for channel averaged radiances might be

Rd(i, θ) = πρi(θ, θ̄i)Bνi [T (p̄i)]Fi τi(ps, θ)
[
1− τi(ps, θ̄i)

]
(4.48)

where pi is an effective pressure of downwelling for channel i. Each channel could have an effective
diffusive angle or the effective diffusive angle, θi, could be defined w.r.t. the angle of observation, θ.

It may also be assumed that that the bidirectional reflectance is given by either ρi(θ, θ̄i) = 1−εi
π

for nighttime and long-wave (i.e., νi < 2300 cm−1) or ρi(θ, θ̄i) = ρi(θ, θ�) for daytime short wave
channels. To estimate the thermal downwelling term we can calculate an approximate form of the
downwelling term using the nadir rapid algorithm

Rd(ν, θ) =
1

2
[1− ε(ν)] τ(ps) [1− τ(ps)]Bν [T (p̄)] , (4.49)

where p̄ = 700 hPa. To first order, if this effect is ignored entirely, a larger εi would be determined
and radiance residuals would be smaller.

The Rapid Transmittance Algorithm (RTA)

This fast transmittance model is based on methods developed and used by Larry McMillan, Joel
Susskind, and others. An introduction to the theoretical development of the approximations em-
ployed can be found in: McMillin and Fleming (1976), McMillin et al. 1995b, Hannon et al. 1996,
Strow et al. 1998, and Strow et al. 1998.

a. Select the Regression Profiles:

48 regression profiles were chosen that cover the realistic range of profile variability. Each
profile consists of temperature and gas amounts of 4 variable gases: water, ozone, carbon
monoxide, and methane. All other gases are ”fixed” (do not vary in amount with profile).

b. Calculate Monochromatic Transmittances:

Monochromatic layer-to-space transmittances for the regression profiles are computed. This
was done using our KCARTA package. The layer-to-space transmittances are grouped into
sets of ”mixed” gases. For this production, there were 4 different ways in which the gases were
grouped, depending upon the frequency region:
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FOW : 3 groups of transmittances: F, FO, FOW

FOWp : 4 groups of transmittances: F, FO, FOW, FOWp

FMW : 3 groups of transmittances: F, FM, FMW

FCOWp: 5 groups of transmittances: F, FC, FCO, FCOW, FCOWp

where F refers to ”fixed” gases, W to water, O to ozone, C to carbon monoxide, and M to
methane. The ”p” refers to perturbed CO2, in which the CO2 amount has been increased by
+5”FM” refers to the transmittance of the ”fixed” gases and methane together.

For channels under 1620 cm-1, 6 angles were computed with the secant angles equal to 1.00
1.19 1.41 1.68 1.99 2.37. For the shortwave channels 6 additional angles were added to extend
out to the larger angles need for the for reflected solar radiance: 2.84 3.47 4.30 5.42 6.94 9.02

c. Convolve the Transmittances:

The monochromatic transmittances are convolved with the appropriate Spectral Response
Functions (SRF). For this production run, there was a separate SRF for each channels. The
SRFs are based upon laboratory measurements of the SRFs. In particular, we used interpola-
tions of measurements for test 261, with the wings added on using a model. The channels in
module 11 which are based on test 266 due to noise problems with test 261 for that module.

d. Calculate Effective Layer Transmittances:

For each layer, the convolved layer-to-space transmittances are ratio-ed with transmittances
in the layer above to form effective layer transmittances for fixed, water, ozone, CO, methane,
and perturbed CO2 are:

For FOW:

Feff(L) = F(L)/F(L-1)

Oeff(L) = ( FO(L)/F(L) )/( FO(L-1)/F(L-1) )

Weff(L) = ( FOW(L)/FO(L) )/( FOW(L-1)/FO(L-1) )

For FOWp:

Feff(L) = F(L)/F(L-1)

Oeff(L) = ( FO(L)/F(L) )/( FO(L-1)/F(L-1) )

Weff(L) = ( FOW(L)/FO(L) )/( FOW(L-1)/FO(L-1) )

peff(L) = ( FOWp(L)/FOW(L) )/( FOWp(L-1)/FOW(L-1) )

For FMW:

Feff(L) = F(L)/F(L-1)

Meff(L) = ( FM(L)/F(L) )/( FM(L-1)/F(L-1) )

Weff(L) = ( FMW(L)/FM(L) )/( FMW(L-1)/FM(L-1) )

For FCOWp:

Feff(L) = F(L)/F(L-1)

Ceff(L) = ( FC(L)/F(L) )/( FC(L-1)/F(L-1) )

Oeff(L) = ( FCO(L)/FC(L) )/( FCO(L-1)/FC(L-1) )

Weff(L) = ( FCOW(L)/FCO(L) )/( FCOW(L-1)/FCO(L-1) )

peff(L) = ( FCOWp(L)/FCOW(L) )/( FCOWp(L-1)/FCOW(L-1) )

The zeroeth layer transmittance (ie when L-1=0) is taken to be exactly 1.0.
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e. Regress the Effective Layer Transmittances and Predictors:

The effective layer transmittances are converted to optical depth (by taking the negative
of the logarithm ), and then weighted according to some estimated relative importance. A
regression is done on this data with a set of profile dependent predictors (see note below) as
the independent variables. The regression, which is of the form A*X=B, where A is a matrix
of predictors and B is the data, calculates X, the fast transmittance coefficients.

Note: The predictors are generally various combinations of the main profile variables such
as the temperature and gas amount, as well as the satellite viewing angle. One of the most
time consuming and tiring aspects in developing a fast model using this method is in select-
ing/inventing the optimum set of predictors. It is essentially a trial and error exercise; try
somthing and see how it works.

The fast transmittance coefficients may be used to quickly compute effective layer transmit-
tances for almost any desired profile simply by calculating the appropriate predictor values for
the profile and multiplying them by the coefficients. The individual component gases (”fixed”,
water, ozone, CO, methane, and the far-wing water continuum) are calculated separately. The
total layer transmittance is the product of the individual component transmittances.

Appendix: SSE Channel Lists

List 1: Hinge Points (ν, cm−1): 649.35, 666.67, 684.93, 704.22, 724.64, 746.27, 769.23,

793.65, 819.67, 847.46, 877.19, 909.09, 943.40, 980.39, 1020.4, 1063.8, 1111.1,

1162.8, 1204.8, 1234.6, 1265.8, 1298.7, 1333.3, 1369.9, 1408.4, 1449.3, 1492.5,

1538.5, 1587.3, 1639.3, 2173.9, 2222.2, 2272.7, 2325.6, 2380.9, 2439.00, 2500.0,

2564.1, 2631.6

List 2: Pre-selected CrIS Window Channels (ν, cm−1): 801.250, 804.375, 809.375, 820.625,

843.750, 917.500, 918.750, 937.500, 948.125, 965.625, 979.375, 1063.125, 1065.000,

1092.500, 1217.500, 1228.750
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Chapter 5

Description of the Core Retrieval
Algorithm
Step I: Microwave Retrieval
Algorithm

The NUCAPS microwave module is a heritage algorithm of the AIRS Science Team microwave
retrieval algorithm (Rosenkranz, 2000, 2006). The reader is referred to the AIRS ATBD for an in
depth description of the subject of this chapter.

5.1 Precipitation Flags, Rate Retrieval and ATMS Corrections

The precipitation algorithm produces the following: (1) flags indicating possible precipitation-
induced perturbations impacting ATMS channels 5, 6, 7, 8, and 9, (2) estimates of corrections
that may, at the user’s option, be applied to ATMS brightness temperatures for channels 5, 6, 7, 8
and 9, to compensate for precipitation, if present, and (3) a precipitation-rate retrieval (mm/h) for
each 50-km ATMS spot which was tuned for mid-latitudes using all-season NEXRAD data.

5.1.1 Precipitation Flags

The objective of the flags for each of ATMS channels 5-9 is to alert data users to the possibility
that retrievals based on these microwave channels might be impacted by precipitation. The four
possible flag states are given by the following

• Flag = 0: The magnitude of the detected precipitation perturbations (if any) are less than
0.5 K.

• Flag = 1: Small perturbations are present (nominally between 0.5 and 2 K), which are ap-
proximately correctable.

• Flag = 2: Estimated ATMS precipitation-induced brightness temperature perturbations for
this channel may exceed 2 K in magnitude, so perturbation corrections are less reliable.

• Flag = -1: It is unknown whether perturbations due to precipitation are present (e.g., surface
elevation greater than 2 km); these perturbations are discussed further later in this chapter.
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Figure 5.1: NUCAPS quality control flag showing regions where the IR/MW retrieval converges
(blue regions) and where the MW-Only retrieval fails (red regions) for the ascending (left figure)
and descending (right figure) satellite modes and for the NUCAPS version 2.0.5.4.

Figure 5.1 shows the ability of the precipitation flag to detect precipitation conditions. Those regions
where the MW-Only retrieval fails (red regions) are highly correlated with precipitation conditions
as has been evaluated using the MiRS rainfall rate product as a reference.

5.1.2 Perturbation Corrections

Perturbation corrections are entirely based on the methodology employed for the AMSU instrument.
The reader is referred to the AIRS ATBD and the reference therein for a complete description of
the methodology.

Perturbation corrections are estimated for ATMS Channels 5–9. In addition, for each ATMS
beam position a precipitation-rate estimate (mm/h) is provided when flag states 0, 1, or 2 exist
for ATMS channel 5 (52.8 GHz). Users of ATMS data for temperature profile retrievals should
use brightness temperatures flagged with 2 or −1 with caution, even if the suggested perturbation
corrections are employed. These perturbations are computed for ATMS channels 5–9 at 50-km
resolution using the algorithm discussed further down. It should be noted that 52.8 GHz brightness
temperatures can suffer warm perturbations over ocean due to low altitude absorption and emission
by clouds or precipitation. Such warm perturbations could be flagged and corrected as are the
cold perturbations. The 23.8/31.4 GHz combination could be used to validate the locations of such
excess absorption and perturbations over ocean.

5.1.3 Rain Rate Retrieval Algorithm

The rain rate retrieval algorithm is an adaptation of the AQUA AMSU-A AMSU-B algorithm. The
reader is referred to the AIRS ATBD for an in depth description of this methodology.

Accurate remote sensing of precipitation rate is challenging because the radiometric signatures of
irregularly formed hydrometeors can depend strongly on their distributions in size, temperature, ice
content and structure. As a result, all active and passive microwave remote sensing methods rely on
the statistical regularity of precipitation characteristics. Experimental validation typically involves
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comparisons with rain gauges, radar, and other sensors, each of which has its own limitations. The
primary precipitation-rate retrieval products of ATMS are 15- and 50-km resolution contiguous
retrievals over the viewing positions of ATMS within 43 of nadir. The two outermost 50-km viewing
positions (six outermost for 15-km) on each side of the swath are currently omitted due to their
grazing angles. The algorithm architectures for these two retrieval methods are presented below.

The 15-km resolution precipitation-rate retrieval algorithm begins with identification of poten-
tially precipitating pixels. All 15-km pixels with brightness temperatures at 183± 7 GHz that are
below a threshold T7 are flagged as potentially precipitating, where

T7 = 0.667 (T53.6 − 248) + 252 + 6 cos(θ) (5.1)

and where θ is the satellite zenith angle. If, however, the spatially filtered brightness temperature
T53.6 at 53.6 GHz is below 249 K, then the brightness temperature at 183 ±3 GHz is compared
instead to a different threshold T3, where

T3 = 242.5 + 5 cos(θ) (5.2)

This spatial filter picks the warmest spot within an array of ATMS pixels. The 183 ± 3 GHz
band is used to flag potential precipitation when the 183±7 GHz flag could be erroneously set by low
surface emissivity in very cold dry atmospheres, as indicated by T53.6. These thresholds T7 and T3

are slightly colder than a saturated atmosphere would be, therefore lower brightness temperatures
imply the presence of a microwave-absorbing cloud. If the locally filtered T53.6 is less than 242 K,
then the pixel is assumed not to be precipitating. Within these flagged regions strong precipitation is
generally characterized by cold cloud-induced perturbations of the ATMS tropospheric temperature
sounding channels in the range 52.5–55.6 GHz. Examples of 183±7 GHz data and the corresponding
cold perturbations at 52.8 GHz are illustrated in Figures 5.3(a) and (c), respectively, of the AIRS
ATBD (see reference). These 50-km resolution 52.8 GHz perturbations ∆T50,52.8 are then used to
infer the perturbations ∆T15,52.8 [see Figure 5.3(d) of AIRS ATBD] that might have been observed
at 52.8 GHz with 15-km resolution had those perturbations been distributed spatially in the same
way as the cold perturbations observed at either 183± 7 GHz or 183± 3 GHz, the choice between
these two channels being the same as described above. This requires the bi-linearly interpolated
50-km AMSU data to be resampled at the HSB beam positions. These inferred 15-km perturbations
are computed for five ATMS channels using:

∆T15,54 = (∆T15,183/∆T50,183)∆T50,54 (5.3)

The perturbation ∆T15,183 near 183 GHz is defined to be the difference between the observed
brightness temperature and the appropriate threshold given above. The perturbation ∆T50,54 near
54 GHz is defined to be the difference between the limb and surface-corrected brightness temperature
and its Laplacian-interpolated brightness temperature based on those pixels surrounding the flagged
region (Staelin and Chen, IEEE Trans. Geosci. Remote Sensing, 38, 2000). Limb and surface-
emissivity corrections to nadir for the five 54-GHz channels are produced by neural networks for
each channel; they operate on nine AMSU-A channels above 52 GHz, the cosine of the viewing
angle Φ from nadir, and a land-sea flag (see Figure 5.2 of AIRS ATBD). They were trained on 7
orbits spaced over one year for latitudes up to ±55◦. Inferred 50- and 15-km precipitation-induced
perturbations at 52.8-GHz are shown in Figures 5.3(c) and (d), respectively, of AIRS ATBD, for
a frontal system. Such estimates of 15-km perturbations near 54 GHz help characterize heavily
precipitating small cells.
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Such inferred 15-km resolution perturbations at 52.8, 53.6, 54.4, 54.9, and 55.5 GHz are then
combined with (1) the 183 ± 1-, ±3-, and ±7 GHz 15-km ATMS data, (2) the leading three prin-
cipal components characterizing the original five corrected 50-km ATMS temperature brightness
temperatures, and (3) two surface-insensitive principal components that characterize the window
channels at 23.8, 31.4, 50.3, and 89 GHz, plus the 166.31 and the five 183 GHz channels. channels.
All 13 of these variables, plus the secant of the satellite zenith angle θ, are input to the neural net
used for 15-km precipitation rate retrievals, as shown in Figure 5.2 of AIRS ATBD. This network
was trained to minimize the rms value of the difference between the logarithms of the ATMS and
NEXRAD retrievals; use of logarithms prevented undue emphasis on the heaviest rain rates, which
were roughly three orders of magnitude greater than the lightest rates. Adding 1 mm/h prevented
undue emphasis on the lightest rates. NEXRAD precipitation retrievals with 2-km resolution were
smoothed to approximate Gaussian spatial averages that were centered on and approximated the
view-angle distorted 15- or 50-km antenna beam patterns. The accuracy of NEXRAD precipitation
observations are known to vary with distance, so only points beyond 30 km but within 110 km of
each NEXRAD radar site were included in the data used to train and test the neural nets. Eighty
different networks were trained using the Levenberg-Marquardt algorithm, each with different num-
bers of nodes and water vapor principal components. A network with nearly the best performance
over the testing data set was chosen; it used two surface-blind water vapor principal components,
and only slightly better performance was achieved with five water vapor principal components with
increased surface sensitivity. The final network had one hidden layer with 5 nodes that used the tanh
sigmoid function. These neural networks are similar to those described by Staelin and Chen (IEEE
TGARS, 38(5), 2000). The resulting 15-km resolution precipitation retrievals are then smoothed
to yield 50-km retrievals. The 15-km retrieval neural network was trained using precipitation data
from the 38 orbits listed in Table 5.1.1. Each 15-km pixel flagged as potentially precipitating using
183 ± 7 GHz or 183 ± 3 GHz brightness temperatures was used either for training, validation, or
testing of the neural network. For these 38 orbits over the United States 15,160 15-km pixels were
flagged and considered suitable for training, validation, and testing; half were used for training, and
one-quarter were used for each of validation and testing, where the validation pixels were used to
determine when the training of the neural network should cease. Based on the final ATMS and
NEXRAD 15-km retrievals, approximately 14 and 38 percent, respectively, of the flagged 15-km
pixels appear to have been precipitating less than 0.1 mm/h for the test set.

5.2 Profile Retrieval Algorithm

The microwave initial guess profile retrieval algorithm derives temperature, water vapor and non-
precipitating cloud liquid water profiles from ATMS brightness temperatures. This module was
originally intended to provide the starting point for the cloud clearing and retrieval algorithm but
has been later replaced by a cloudy regression solution. Nonetheless, ATMS has improved spectral
resolution and coverage with respect to previous AMSU/HSB and AMSU/MHS instruments. Since
the ATMS retrieval performance is still under exam, it has been decided to leave it as part of the
NUCAPS processing flow.

The microwave retrieval algorithm is an iterative algorithm in which the profile increments are
obtained by the minimum-variance method, using weighting functions computed for the current
temperature and moisture profiles with the rapid transmittance algorithm described later in this
document. The input vector of measured brightness temperatures is accompanied by an input
validity vector whose elements are either one or zero. This provides a way of handling missing or
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bad data.

5.2.1 Preliminary Surface Type Classification

The surface classification algorithm is diagrammed in Figure 5.4 of AIRS ATBD. The classification
rules are from Grody et al. (2000), and make use of discriminant functions that are linear combina-
tions of ATMS channels 1, 2, 3, and 16. If sea ice is indicated by the classification algorithm, then
its concentration fraction is estimated from a linear operation on channels 1, 2, and 3. If the surface
type is glacier or snow-covered land, then the snow or ice fraction is estimated using channels 3 and
16. Parameters of the surface brightness model are assigned according to surface type as in Table
5.1. A priori emissivities for the ice and snow types were estimated from NOAA-15 and Aqua data.
For land εo = 0.95 at all frequencies; for seawater, the dielectric constant model of Ellison et al.
(2003) was used to compute the emissivity of a flat surface viewed in the polarization of the ATMS
radiometer.

5.2.2 Atmospheric Moisture and Condensation Model

Brightness temperatures at the ATMS channels 16–22 depend on the vertical profile of atmospheric
opacity relative to temperature, but do not by themselves distinguish, at any given altitude, between
opacity due to water vapor and opacity due to liquid water. However, the physics of water vapor
condensation add some a priori information or constraints. Cloud coverage is parameterized as
in a stratiform condensation model, where a relative humidity threshold determines the onset of
condensation. Although the water vapor profile is saturated within the cloudy part of the field of
view, it is assumed that the condensation process is not spatially resolved, hence the threshold is
less than 100% relative humidity. Currently, the threshold is set to 85%.

In the condensation model, the vapor and cloud liquid water density profiles are both linked
to a single parameter H. When H ≤ 85%, H is equal to relative humidity; in the range 85% to
115%, changes from a water-vapor variable to liquid-water, and values of H greater than 115%
increase liquid water while the vapor remains at saturation. Because convergence, to be discussed
later, is determined from the brightness temperature residuals, which in turn are computed using
the vapor and liquid column densities, the role of H in this algorithm is only to introduce the a
priori statistics and constraints. The average vapor density in the field of view is related to H by

ρν =
ρs
10

[ramp(H, 10)− f(H)] , (5.4)

where ρs is the saturation value of mixing ratio and

ramp(x, c) ≡ x , x ≥ c , (5.5)

ramp(x, c) ≡ c exp(x/c− 1) , x < c , (5.6)

and
f(H) = ramp(H −HL, 6) . (5.7)

Thus, the value of ρν/ρs lies between zero and HL/100. the liquid water mixing ratio averaged over
the field of view is assumed to be given by:

ρL = c1 f(H) (5.8)

where c1 is a coefficient equivalent to a liquid/air mass mixing ratio of 10−5 %.
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The saturation vapor mixing ratio is computed from the temperature profile by the formula of
Liebe (1981). Saturation is calculated with respect to liquid water (by extrapolation) even when
the temperature is below 273 K. This model therefore allows supercooled liquid water and water
vapor greater than the saturation value with respect to ice.

5.2.3 Estimation of Surface Brightness and Atmospheric Moisture

This section is taken from the AIRS ATBD, Chapter 5 and describes an algorithm based on re-
trieval methods described by Wilheit (1990), Kuo et al. (1994), Wilheit and Hutchison (1997), and
Rosenkranz (2006). It uses ATMS channels 1, 2, 3, 16–22. The measurements are weighted averages
over 3×3 spatial arrays which approximate the AMSU-A field of view. The H profile, HL, and four
surface parameters T0, T1, T2, and pg are concatenated into a vector Y . The parameter pg when
the surface type is either water or coastline, determines the secant ratio ρ by:

ρ =
sec(Θref)

sec(Θ)
= 1 + ramp(pρ, 0.02) . (5.9)

The cost function to be minimized is given by(
Ŷ − Y0

)T
S−1
Y

(
Ŷ − Y0

)
+ (Tobs − T − T ′)T (Se − Sf )−1(Tobs − T − T ′) , (5.10)

in which Ŷ is the estimate of Y , Y0 is its a priori value and SY is its covariance matrix with respect to
T0. Tobs is a vector of the eight measured antenna temperatures, Se is their error covariance matrix
(assumed diagonal), T ′ is the tuning correction for side lobe effects and possible transmittance
error, and TB is a brightness temperature vector computed from the current values of temperature,
moisture and surface brightness. Sf is a diagonal covariance matrix which approximately represents
errors in TB resulting from errors in the temperature profile retrieval and tuning.

The estimate of Y is obtained by Newtonian iteration (see Rodgers, 1976), except that Eyres
(1989) method of damping is used to avoid large relative humidity increments, because of the
nonlinearity of the problem.

5.2.4 Iteration Procedure and Convergence Tests

Convergence is tested separately for the temperature channels and for the moisture/surface channels.
Iteration of either part of the algorithm is suspended when one of the following conditions is met
: (1) the computed brightness temperature vector TB meets the closure criterion; or (2) when
successive computations of the residuals change by less than 1% for temperature channels and 2%
for water vapor channels of a given threshold; or (3) when the number of iterations exceeds a preset
limit, which is 12 for the temperature channels and 16 for the moisture/surface channels. Typically,
iteration of the temperature profile ceases after one or two iterations, but the moisture profile often
requires six or more iterations.

Given the previous estimate of temperature or water vapor given by P̂n−1 (which is P̂0 on
the first iteration), the next estimate of temperature or water vapor is obtained by Newtonian
iteration, as shown in Equation (5.11) where a method of damping (represented by δ) is used for
water vapor to avoid large relative humidity increments because of the nonlinearity of the problem.
For temperature no damping is used (δ = 1)

P̂n = P̂n−1 − δ
(
P̂n−1 − P̂0

)
+ δSP W

T
P XP . (5.11)
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In Equation (5.11), SP is covariance matrix with respect to P̂0, WP is the Jacobian matrix (matrix
of derivatives of brightness temperatures with respect to the atmospheric parameter P ), computed
and updated for the state represented by P̂n−1. The XP term in Equation (5.11) is the solution
vector as described in (Rosenkranz, 2000). Figures 5.2 and 5.3 show global maps of the atmospheric
temperature and water vapor retrieved by the NUCAPS microwave only algorithm.

Figure 5.2: Temperature at 500 hPa for the ascending (left figure) and descending (right figure)
satellite modes, retrieved by the NUCAPS microwave only retrieval version 2.0.5.4.

Figure 5.3: Water Vapor at 950 hPa for the ascending (left figure) and descending (right figure)
satellite modes, retrieved by the NUCAPS microwave only retrieval version 2.0.5.4.
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Chapter 6

Description of the Core Retrieval
Algorithm
Step II: Regression Retrieval

6.1 Post-Launch First Guess Regression Procedure

NOAA/NESDIS uses an eigenvector global regression procedure to provide fast and accurate initial
guesses for temperature and moisture profiles as well as surface emissivity and reflectivity using
simulated CrIS data. Eigenvector regression for atmospheric sounding was first demonstrated by
Smith and Woolf (1976). It is assumed that all independent CrIS radiances have been preprocessed
by the cloud clearing module described in the last section. Eigenvectors are computed from a
training dataset of radiances that have been normalized by the CrIS expected noise and are used as
basis functions to represent the CrIS radiometric information. Eigenvectors are commonly referred
to as Empirical Orthogonal Functions (EOF’s) in the literature, a convention that will be adopted
throughout the remainder of this section. Because of the large number of channels measured by
CrIS, the eigenvector form of regression is crucial for exploiting the information content of all
channels in a computationally efficient form. By representing radiometric information in terms of
a reduced set of EOF’s (much fewer in number than the total number of instrument channels) the
dimension of the regression problem is reduced by approximately one order of magnitude. Another
advantage of using a reduced set of EOF’s is that the influence of random noise is reduced by
elimination of higher order EOF’s which are dominated by noise structure. It should be noted that
if all EOF’s are retained as basis functions the eigenvector regression reduces to the ordinary least
squares regression solution in which satellite measurements are used directly as predictors. The
mathematical derivation of the EOF regression coefficients is detailed in the following sub-sections.

6.1.1 Generating the Covariance Matrix and Regression Predictors

A training ensemble of temperature, humidity, and ozone profile data are used to generate radiances
for all CrIS channels that meet specified instrument performance. Expected instrumental noise is
added to the simulated radiances. Note that real observations will be used after launch to generate
the eigenvectors. Computed radiances are only used for prelaunch coefficients. The deviations of the
radiance scaled by noise from their sample mean are stored in the matrix ∆T̃Bn(m),j (see Eq. (6.1)),
a matrix of dimensions M × J , where M is the total number of instrument channels, m, and J is
the sample size of the training data set. We begin by normalizing the measured radiances, R[n(m)],
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for a subset of channels n(m), by the measured instrument noise, NE∆N[n(m)]. The noise scaled
radiance covariance matrix from which the EOF’s are derived is then generated as follows:

∆T̃B,n(m),j ≡
Rn(m),j

NE∆Nn(m)
−
〈Rn(m),j〉j

NE∆Nn(m)
≡

Rn(m),j

NE∆Nn(m)
− 〈T̃B〉n(m) (6.1)

We compute the eigenvectors of the signal to noise covariance of ∆T̃B,n(m),j . For the CrIS FSR
v2.0, the eigenvector file was trained using one day CrIS block 2.0 SDR radiances of 15 January
2015.

TN,cov ≡
1

J

J∑
j=1

∆T̃B,n(m),j ∆T̃B,j,n(m)(θ) = ETn(m),k Λk,k′ Ek′,n(m) (6.2)

The diagonal elements of represent the variance of the respective channel noise scaled radiance
while the off-diagonal elements represent the covariance between pairs of channels. An eigenvector
decomposition is performed on the matrix.

The eigenvectors of the normalized signal-to-noise covariance are orthogonal and Λk,k′ is a
diagonal matrix with elements equal to λk. We normalize ∆TB ∆T TB by the number of observations
J so that the magnitude of the eigenvalues does not change with the size of the training ensemble.

6.1.2 NOAA Eigenvector File Format

The eigenvector file is written out with the following components

1. Header Block containing

• the number of channels in the subset (M = 2211) and sample size (J = 77, 790)

• the eigenvectors, Kstore = 200

• a flag if radiances are used

• a flag if the mean is subtracted

• the noise file filename

2. The average of Θ̃ for the M channels

〈T̃B〉 ≡
〈Rn(m),j〉j

NE∆Nn(m)
(6.3)

3. Each eigenvector, Ek,n(m), is written out a single record for each value of k = 1,Kstore

4. The value of λ(k) for k = 1,Kstore

5. The value of NE∆N(nm) for m = 1,M

6. The value of f [n(m)] for m = 1,M

7. The value of n(m) for m = 1,M
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6.1.3 Post-Launch Regression Computation

The radiances can be represented by their principal component scores. We have two sets of regression
coefficient files, for all sky regression, the principal components are calculated from measured CrIS
radiances, and for cloud clear regression, they are calculated from cloud clear radiance (see details in
next chapter). In this algorithm we normalize by the square root of the eigenvalue to normalize the
principal component scores so that they are numerically significant. Otherwise, the first principal
component would have values approximately 1000 times the signal as P (Kmax).

Pk,j =
1√
λk

Ek,n(m) ∆T̃B,n(m),j (6.4)

an estimate of the propagated error in the principal components for case j, δP̂k,j , can be given by
the root-sum-square (RSS) of the linear combination and an estimate of the error in the radiance
for case j, δRn(m),j . This results in an error in the argument of δT̃N,n(m),j ≡ δRn(m),j/NE∆Nn(m)

and

δP̂k,j =

√
1√
λk

(
Ek,n(m) δT̃N,n(m),j

)2
(6.5)

Only k = 1,Kmax principal components are kept, where Kmax is the number of significant eigenval-
ues. For IR plus MW retrieval, the predictors also include ATMS 17 channel brightness temperature
and they are channels 5–15 and 17–22. But for IR only retrieval, we should exclude ATMS bright-
ness temperature of these channels from the predictors. Currently, four days from CrIS/ATMS
observations for generating regression coefficients are 15 January 2015, 15 April 2015, 15 July 2015
and 15 October 2015. Data are selected by screening out cases where the CrIS cloud cleared radi-
ances may be affected by clouds and where there may be problems with the geophysical states used
as “truth” using the following tests

1. The brightness temperature of the CrIS observation in channel ν0 = 2390 cm−1 must be less
than 2 K of a predicted brightness temperature, T̂B(ν0), estimated from ATMS brightness
temperatures, TBn, for ATMS channels n = 5, 6 and 7, as follows

T̂B(ν0) = a1 + a2 TB5 + a3 TB6 + a4 TB7 + a5 cos(θ�) + a6 [1− cos(ϑ)] , (6.6)

where ai, i = 1, . . . , 6, are the coefficients of the ATMS screening test used to predict CrIS
channel at 2390 cm−1 (determined to be +50.05, +0.4791, +0.5635, −0.2332, +3.03, −15.02,
respectively), θ� is solar zenith angle and ϑ is the view angle.

2. The reconstruction score is less than 1.5.

The regression is trained using ensembles at similar view angles. Currently, there are four
view angle regimes as defined in Table 6.1. A predictor array is constructed using the principal
component scores for those cases, j(v) with ϑ1(v) < |ϑ| ≤ ϑ2(v), where ϑ is the instrument view
angle. For CrIS this angle varies from −48.3◦ ≤ ϑ ≤ 48.3◦. The predictor argument for the sub-set
of cases is assembled with the first Kmax elements being set equal to Pk,j . The element i = Kmax +1



Chapter 6: Regression Retrieval NUCAPS ATBD Version 2.0 August 14, 2017 44

is set equal to one if ϑ < 0 or zero if ϑ ≥ 0

Pk,j(v) =



P1,j(v)

P2,j(v)

...
PKmax,j(v)

1

2
{1− sgn[ϑ(v)]}

TB5, . . . , TB15, TB17, . . . , TB22

1− cos[ϑ(v)]


, i = 1, Kmax + 2 . (6.7)

Table 6.1: View-Angle Regimes in Post-Launch Regression

v ϑ1(v) ϑ2(v)

1 53.130◦ 42.269◦

2 42.269◦ 31.788◦

3 31.788◦ 19.948◦

4 19.948◦ 0.000◦

Another issue for the regression is that topography limits the available training ensemble for
some altitude layers. For each case, j, there is a maximum number of vertical levels defined by the
surface pressure (that is, some of the 100 layer grid is below the surface). If this lower level is given
as Lbot then the number of cases in the training ensemble is a function of how many cases have
surface pressure above that level, therefore, the number of cases, J , in the training ensemble is a
function of both view angle and Lbot and will can write that index as j(v, Lbot) which is the subset of
cases that satisfy the criteria in Table 6.1 and have valid geophysical parameters in the layer under
consideration in Xi. See Table 6.2 for a translation from Xi to layer index L. The average predictor
argument for this subset ensemble can be computed and subtracted from the training ensemble

∆Pk,j(v,Lbot) = Pk,j(v,Lbot) − 〈Pk,j(v,Lbot)〉J(v,Lbot) (6.8)

The equation to be solved is given by

Xi,j(v,Lbot) = 〈Xi,j(v,Lbot)〉j(v,Lbot) +Avi,k ∆Pk,j(v,Lbot) (6.9)

where we can write,
∆Xi,j(v,Lbot) = Xi,j(v,Lbot) − 〈Xi,j(v,Lbot)〉j(v,Lbot) (6.10)

The geophysical parameters in the NOAA regression are defined in Table 6.2. For moisture the
regression is trained on both the ln[r(L)] and r(L), where r is the mass mixing ratio in grams/kilo-
gram (g/kg).

q =
Mw ∆Cw(L)

Mt ∆Ct(L)
=

Mw∆Cw(L)

1000 · Mt
Md

NA
∆p(L)
g

. (6.11)

If it is assumed that Mt ' 0.98Md + 0.02Mw ≈ 1 and g = 980.64 ≈ 1000, the form used in the
code (mx2mr.F) is obtained, which is

q(L) =
Mw ∆Cw(L)

NA ∆p(L)
(6.12)
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Table 6.2: Geophysical Parameters, Xi, Solved in NOAA Realtime Regression

i L interpretation

1 1 T (1)
2 1 rw(1)
3 1 ln[rw(1)]
4 1 ln[ro(1)]
5 2 T (2)
6 2 rw(2)
7 2 ln[rw(2)]
8 2 ln[ro(2)]
...

...
...

385 97 T (97)
386 97 rw(97)
387 97 ln[rw(97)]
388 97 ln[ro(97)]
393 99 T (Ps)
394 99 rw(Ps)
395 99 ln[rw(Ps)]
396 99 ln[ro(Ps)]
397 100 Ts

rw ≡ mass mixing ratio of water, ro ≡ mass mixing ratio of ozone. The index i is used in the data file and the index

L = 1 + (i− 1)/4 is used in a storage vector in the retrieval code.

and the mass mixing ratio is then given by

rw(L) =
q(L)

1− q(L)
(6.13)

and the least square solution is given by

Avi,k = ∆Xi,j(v,Lbot) ∆P Tj(v,Lbot),k

[
∆Pk,j(v,Lbot) ∆P Tj(v,Lbot),k

]−1
(6.14)

No regularization is needed since the principal components have been essentially regularized by
selecting only 85 of the principal components. Note that the regression coefficients can be related
to empirical Kernel functions, K̃n(L), for channel n and pressure level L.

In the eigenvector regression the empirical Kernel functions can be computed by

K̃n(L) = Ai(L),k Ek,n , (6.15)

where i(L) is the subset of indices for the selection of the geophysical parameter group (e.g., T(L),
is given for L = 1, 2, 3, . . ., which is given by i = 1, 5, 9, . . . in Table 6.2)

Once Avi,k is determined we can combine the average of the geophysical parameter given in

Eq. (6.10), Xj ≡ 〈Xi,j(v,Lbot)〉j(v,Lbot), and the average of the predictor given in Eq. (6.8), P k ≡
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〈Pk,j(v,Lbot)〉J(v,Lbot) into a single value, called Ai = Xi + Ai,k P k, so that our regression equation
can utilize the un-normalized predictors

Xi,j(v,Lbot) = Avi +Avi,k Pk,j(v,Lbot) (6.16)

where Avi is defined as

Avi ≡ 〈Xi,j(v,Lbot)〉j(v,Lbot) − Avi,k 〈Pk,j(v,Lbot)〉J(v,Lbot) (6.17)

A propagated error estimate can be computed from the linear combination of principal compo-
nents

δX̂i,j(v,Lbot) =

√∑
i

(
Avi,k δPk,j(v,Lbot)

)2
(6.18)

Once the regression matrix is known it is useful to compute the mean and standard deviation of
the real error between the regression, applied to the training ensemble radiances, and the geophysical
value in the training ensemble. Each case has an error, δX, given by

δXi,j(v,Lbot) = Xi,j(v,Lbot) −
[
Avi +Avi,k · Pk,j(v,Lbot)

]
(6.19)

For each geophysical parameter we can compute a mean and standard deviation of the regression
error (difference of regression from the training values). The mean is given by

δXi ≡
1

J(v, Lbot)

∑
j
δXi,j(v,Lbot) (6.20)

and a standard deviation is given by

σ(δXi) ≡

√
1

J(v, Lbot)

∑
j

(
δXi,j(v,Lbot) − δXi

)2
(6.21)

The standard deviation can be compared to the standard deviation of the training ensemble’s
departure from its mean, given in Eq. (6.10)

σ(Xi) ≡

√
1

J(v, Lbot)

∑
j

(
∆Xi,j(v,Lbot)

)2
(6.22)

6.1.4 NOAA Regression File Format

In the NOAA regression file each set of geophysical parameters is written for a view angle block.
The index number system for the geophysical parameters is given in Table 6.2 or ??. In the
profile regression, the 393 parameters (1–388, 393–397) are written out in 4 sequential blocks in the
regression file. In the surface regression the 39 emissivity regressions are written out first for land
and then for ocean.

• A header line for each parameter block contains

– parameter number (see Table 6.2 or Table ??)

– number of predictors

– pressure at level L or frequency at emissivity L
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– number of cases in training ensemble, J(v, Lbot) or J(l).

– the mean of the training ensemble, 〈Xj(v,Lbot(L))〉j(v,Lbot)
– the standard deviation of the training ensemble, σ[X(L)]

– the standard deviation of the error in the training ensemble, σ[δX(L)]

• A block of I + 1 coefficients, starting with Avi and then the I values of Ai(L).

6.1.5 Post-Launch Surface Emissivity Regression

In the case of surface emissivity there is no truth file to train against with real radiance data. In this
case, we simulated J cases where the infrared radiances were computed from the ECMWF forecast
and a surface emissivity model (Fishbein et al., 2003). The eigenvector approach was not used. In
this case, radiances for window channels, R[n(m), j], are selected. The emissivities, ε(L, j), were
provided by a model at the 39 frequencies specified in Table ??. Notice that short-wave observations
are not used to predict shortwave emissivity. This regression relies on statistical correlations between
the short-wave and long-wave to solve for these parameters.

In this case, the predictors consisted of theM radiances, written as signal-to-noise (see Eq. (6.1)),
and the side of the scan and cosine of the view angle were used as additional predictors. In this case,
all J cases see the surface, so there is no subset for topography. Also, window channels require only
a minor adjustment for view angle, so the complete ensemble was used. The ocean emissivity is a
well modeled function (e.g., Masuda et al., 1988; Wu and Smith, 1997; Masuda, 2006; Nalli et al.,
2008a,b) and the regression is performed on land and ocean separately; land or ocean is indicated
by the superscript l. Therefore, the predictors are given by

P lk,j =



R1,j(l)

R2,j(l)

...
RM,j(l))

1

2

{
1− sgn[ϑ(vj(l))]

}
1− cos[ϑ(vj(l))]


, i = 1, M + 2 (6.23)

where
∆Xi,j(l) = Xi,j(l) − 〈Xj(l)〉j(l) (6.24)

with the least square solution is given by

Ali,k = ∆Xi,j(l) ∆P Tj(l),k

[
∆Pk,j(l) ∆P Tj(l),k

]−1
. (6.25)

Again, once Ali,k is determined we can combine the average of the geophysical emissivity param-

eter and the average of the predictor into a single value, called Ai, so that our regression equation
becomes

Xj(v,Lbot(L)) = Ali +Ali,k Pk,j(v,Lbot) (6.26)

where Ali is defined as
Ali ≡ Ali,k 〈Pk,j(v,Lbot)〉J(v,Lbot) (6.27)

These regression coefficients have the same format as the ones described in Subsection 6.1.3.
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Chapter 7

Description of the Core Retrieval
Algorithm
Step III: Cloud Clearing

Cloud clearing is the process of computing the clear column radiance for a given channel n, and
represents what the channel would have observed if the entire scene were cloud free. The entire
scene is defined as the ATMS field of regard (FOR) which includes and array of 3× 3 CrIS filed of
views (FOV).

The cloud clearing approach is based upon the following reasoning. For simplicity of argument,
we momentarily consider using only K = 2 adjacent FOVs and one cloud formation. The observed
radiances in FOV j = 1 and 2, corresponding to channel n are given by:

R1(n, φ0) = (1− α1(φ0)) Rclr(n, φ0) + α1(φ0)Rcld(n, φ0) (7.1)

R2(n, φ0) = (1− α2(φ0)) Rclr(n, φ0) + α2(φ0)Rcld(n, φ0) (7.2)

where α1(φ0) and α2(φ0) are the zenith angle dependent effective cloud fractions for each field of
view, Rclr(n, φ0) is the radiance which would be observed if the entire field of view were clear, and
Rclr(n, φ0) is the radiance which would be observed if the entire field of view were covered by the
cloud. The basic assumption of cloud-clearing is that if the observed radiances in each field-of-view
are different, the differences in the observed radiances are solely attributed to the differences in the
fractional cloudiness in each field of view while everything else (surface properties and atmospheric
state) is uniform across the field of regard. A process referred to as local angle adjustment is applied
to these observed radiances, channel by channel, to generate angle adjusted radiances, Rj(n, φ0),
representative of the radiance that CrIS channel n would have observed in FOV j if the observation
were taken at the satellite zenith angle of the center FOV, φ0 rather than at its actual satellite
zenith angle. Based on this assumption, both Rclr(n, φ0) and Rcld(n, φ0) are assumed to have the
same respective values in each field of view. For simplicity, from now on we will omit the central
satellite zenith angle term, φ0.

Combining (7.1) and (7.2) and eliminating Rcld(n) one can solve for the cloud-cleared radiance
term as a linear extrapolation of the radiances from the two cloudy fields of view as follows:

Rclr(n) = R1(n) +
α1

α2 − α1
[R1(n)−R2(n)] . (7.3)

This is done in two steps. We first use an estimate of the cloud clear radiance, Rclr(n)EST , to

49
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Definition of Cloud Clearing Symbols Used in this Chapter

symbol description

Xs superscript s refers to the step
i FOV index
j η index
J number of ηj
k ζ index
n channel index
NF the number of FOV’s within an AMSU footprint

NA the number of FOV’s within Rn
δn,n′ Kronecker delta function
ηj extrapolation parameters, determined w/o damping
η̃j extrapolation parameters, determined w/ damping
δη̃j error in η with damping
Asn noise amplification factor
Rn,j observed radiance in FOV j
Xs
L geophysical state (T (p), q(p), O3(p), ε(n), . . .)

Rn(Xs,i−1
L ) Radiance Computed from a geophysical state

R(n)CCR clear column radiance
R(n)EST clear radiance estimate

Rn average of observed cloudy FOV’s
In,n′ instrument noise covariance
NE∆N standard deviation of instrumental noise

Nn,n′ error covariance of (R(n)EST −Rn)

Wn,n′ inverse of error covariance of (R(n)EST −Rn)

Sn,j FOV contrast, Rn −Rn,j
Uj,k eigenvectors of [(Sj,n)T W s

n,n′Sn,j ]

Λk,k eigenvalue matrix of [(Sj,n)T W s
n,n′Sn,j ]

λk diagonal elements of Λk,k
ζsk transformed extrapolation parameters(
δζ̃kδζ̃

T
k

)s
error covariance of solved components of ζ(

δζ̂kδζ̂
T
k

)s
error covariance of components of ζ not solved for(

δζk · δζTk
)s

total error covariance of ζ

obtain the so called cloud-clearing parameter η, defined as:

η =
α1

α2 − α1
=
Rclr(n)EST −R1(n)

R1(n)−R2(n)
(7.4)

The cloud-clearing term η is channel independent and is used then in (7.3) to solve for Rclr(n) and
cloud clear the entire spectrum.

While it is true that a single channel and 2 fields of view can be used to cloud clear the full
spectrum in the presence of one cloud, for the case of K clouds a total of K + 1 fields of view and
many channels must be used in a least squares sense to discriminate the clouds at different levels.
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Using the uniform scene assumption described above, Chahine (1977) showed that the reconstructed
field of regard clear-column radiance for channel n, RCCR(n), can be written as a linear combination
of the measured radiances in K + 1 fields of view, according to:

Rclr(n) = R1(n) + η1 [R1(n)−RK+1(n)] + . . . + ηl
[
R1(n)−R(K+2)−l(n)

]
+ ηK [R1(n)−R2(n)] ,

(7.5)
where ηK are unknown channel independent constants and K+1 fields of view are needed to solve
for K cloud formations.

Equation (7.5) was later replaced by a similar but more stable equation of the form:

Rclr(n) ≡ Rn +

K∑
j=1

(
Rn −Rn,j

)
ηj (7.6)

where Rn is called the extrapolation point and is an average of K FOV’s defined by

Rn ≡
1

K

K∑
j=1

Rn,j , (7.7)

where Rn is the average radiance of all K fields of view. The expression in (7.6), Rn−Rn,j is defined
as radiance contrast.

As in Susskind et al. (1998), the ηj values are determined from observations in a selected set of
Nc cloud filtering channels which are primarily selected in between lines of the 15 micron CO2 band.
If, for each channel n, one substitutes an estimated value,Rclr(n)EST , of the expected cloud-clear
radiance for channel n, Rclr(n) in Eq. (7.6), this gives Nc equations for K unknowns, of which only
K − 1 are linearly independent. Therefore, the solution for the K ηj is given by a least square
minimization whose parametrization is derived below. The radiance contrast can be rewritten in
matrix form as:

Sn,j ≡ Rn −Rn,j . (7.8)

For nine FOVs the components of this matrix are given by:

Sn,j =


R1 −R1,9 R1 −R1,8 . . . R1 −R1,1

R2 −R2,9 R2 −R2,8 . . . R2 −R2,1
...

...
. . .

...
RN −RN,9 RN −RN,8 . . . RN −RN,1

 . (7.9)

The equation to be solved can be written as:

R(n)EST −Rn = Sn,j ηj . (7.10)

The estimate of the clear radiances can be derived from

1. infrared radiances computed from an estimate of the clear atmosphere from a microwave
physical retrieval, Rn(Xs,i−1

L )

2. infrared radiances computed from an estimate of the clear atmosphere from a infrared/microwave
physical retrieval which agrees with the microwave radiances,

3. infrared radiances computed from regression with microwave radiances.
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We will apply a weight to the channels used in the least squares fit of this equation, Wn,n′,
which is the inverse of an estimate of the covariance of R(n)EST − Rn. The error covariance is
given by computational error estimates associated with R(n)EST derived from error estimates in
the geophysical parameters, Cn, n′ and instrumental noise, In,n′ , associated with Rn.

Wn,n′ =

(
In,n′

NA
+ Cn,n′

)−1

(7.11)

The computational covariance matrix, Cn,n′ , is composed of a summation of all the radiance

error estimates, Es,in,g, for all geophysical parameters held constant during a retrieval:

Cn,n′ ≡
∑

g
Es,in,g

(
ETg,n

)s,i
. (7.12)

The radiance error estimate, Es,in,g, due to uncertainties in geophysical quantities is computed
from error estimates in geophysical groups Xs,i

L,g (e.g., an entire temperature profile). As with the
sensitivity functions, this can be thought of as an error estimate of a parameter, δAg, and an
associated function, F sg (L). The partial derivatives are calculated from the current estimate of the

geophysical state, Xs,i
L , and an estimate of the uncertainty in each geophysical group to be held

constant in this stage of the retrieval, δXs,i
L,g, and is calculated by a finite difference for infrared

channels (with additive functions)

Es,in,g ≡ δAs,ij ·
∂Rn

(
Xs,i
L + Fj ⊗ Âj

)
∂Aj

∣∣∣∣∣
Xs,i
L

(7.13)

≈
[
Rn

(
Xs,i
L + δXs,i

L,g ⊗Qg
)
−Rn

(
Xs,i
L

)]
, (7.14)

and for microwave channels

Es,in,g ≈ TBn
(
Xs,i
L + δXs,i

L,g ⊗Qg
)
− TBn

(
Xs,i
L

)
. (7.15)

Since δXL,g is an RSS error estimate it can be correlated vertically and spectrally and correlated
with respect to other parameters (e.g., surface spectral emissivity error can be correlated with skin
temperature). We use Qg as a scaling to compensate for assumed anti-correlation in these error
estimated. Currently we set Qg to 0.5 for T (p) and q(p) error estimates and 1.0 for all other error
estimates.

The instrument noise correlation matrix, In,n′ , is given by

In,n′ = NE∆Nn δn,n′ NE∆Nn′ , (7.16)

where the Kronecker delta function, δn,n′

δn,n′ = 1 if n = n′

= 0 if n 6= n′ . (7.17)

For an apodized interferometer the correlation matrix and noise reduction factor for the apodization
function would replace the Kronecker delta function (see Barnet et. al, 2000).

The iterative methodology to determine clear column radiances consists of four passes to de-
termine ηs (s = 1, 2, 3, 4), using four sets of conditions, described later, to compute Rclr(n). At
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each iteration, both Rclr(n) and ηs become increasingly more accurate. Each set of conditions has
its own covariance matrix , reflecting expected errors in Rclr(n) and Rj(n). The diagonal term of
the noise covariance matrix is modeled according to:

(W s
n,n)−1 = (In,n)2 +

[
∂Rn
∂Ts

δT ss

]2

+

[
∂Rn
∂εn

δεsn

]2

+

[
∂Rn
∂ρn

δρsn

]2

+

[
∂Rn
∂T (p)

δT (p)s
]2

+

[(
∂Rn

∂q(p)/q

)(
δq(p)s

q

)]2

+ 0.12

(
dB

dT

)2

TB,n,clr

+ N ′
2
n,n

(
dB

dT

)2

TB,n,clr

, (7.18)

where In,n′ is the channel i instrumental noise and the next 5 terms are contributions to errors in
the computed value Rclr(n) resulting from errors in estimated surface skin temperature, surface
spectral emissivity, surface spectral bi-directional reflectance of solar radiation, and temperature
and moisture profile respectively. Two additional sources of radiance uncertainty are included in
the equation, representative of the physics error estimate, N ′n,n′ (see ahead), and an additional
radiance uncertainty term. Both terms are in brightness temperature units. The off diagonal term
of the noise covariance matrix is given by:

(W s
n,n′)

−1 =

[
∂Rn
∂Tsfc

∂R′n
∂Tsfc

δT ssfc

]2

+

[
∂Rn
∂εn

∂R′n
∂εn′

δεnδεn′

]
+ . . . (7.19)

Multiplying both sides of Eq. (7.10) with Eq. (7.11) yields

W s
n,n

[
R(n)EST −Rn

]
= W s

n,n Sn,j η
s
j , (7.20)

then multiplying both sides by the transpose of the S-matrix yields

(Sj,n)T W s
n,n

[
R(n)EST −Rn

]
= (Sj,n)T W s

n,n Sn,j η
s
j , (7.21)

and the least squares determination of the extrapolation parameters would be

ηsj =
[
(Sj,n)T W s

n,n Sn,j

]−1
(Sj,n)T W s

n,n

[
R(n)EST −Rn

]
(7.22)

In low signal-to-noise or clear scenes the signal-to-noise matrix,
[
(Sj,n)T W s

n,n Sn,j

]
, can vanish

and the solution would become unstable. In addition, we would like to determine the error covariance
of the cloud clearing parameters, δη′ δη, which, we will discover, is equal to the inverse of the signal-
to-noise matrix. The error covariance is highly non-diagonal which makes both damping and noise
determination difficult.

7.1 Selection of Optimal Fields of View

The effects of instrumental noise on the clear column radiances will generate in general be amplified
from single spot noise because the clear column radiance are expressed as a linear combination of
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the observations in different fields of view. We can compute the amplification of the random noise
that results from computing cloud cleared using Eq. (7.3). Taking again the case of two FOVs,
Eq. (7.3) is first rewritten as

Rclr(n) = R1(n) (1 + η)−R2(n) η (7.23)

and note that the standard deviation of the error in R1(n) and R2(n) are both given by NE∆N.
The error in Rclr is given by

δR2
clr(n) = NE∆N2 (1 + η)2 + NE∆N2 η2 (7.24)

= NE∆N2
[
(1 + η)2 + η2

]
, (7.25)

therefore, the error has been “amplified” by

A =

√
(1 + η)2 + η2 (7.26)

Analogously, for the case of n = 9 field of view, we have:

A ≡

√∑n

j=1

[
1

n

(
1 +

∑n

j′=1
ηj′
)
− ηj

]2

. (7.27)

A is approximately equal to
√∑n

j=1 η
2
j because the first term, containing the factor 1/n, is

small. It is desirable to find an accurate expression for clear column radiance which minimizes
the amplification factor. We can do this by expressing Equation (7.6) in terms of radiances in an
optimal set of fields of view, given by linear combination of the original set.

The matrix to be inverted can be transformed to a vector of eigenvalues, λk, with a unitary
transformation matrix, Uj,k. The index j denotes the parameters in transformed space versus k for
the untransformed parameters. This is equivalent to transforming the original Sn,j matrix to an
optimum linear combination of the original radiance differences, Sn,j Uj,k.

Λk,k ≡ (Uk,j)
T (Sj,n)T W s

n,n Sn,j Uj,k , (7.28)

where λk are the diagonal elements of Λk,k. Eigenvalues where λk < λc, where λc is determined em-
pirically, are not used in the solution. Removing low eigenvalues has the effect of reducing noise in
the solution. The number of non-zero eigenvalues is an estimate of the number of cloud formations
determined by the observed radiances and the signal-to-noise analysis. The linear combination asso-
ciated with each eigenvalue represents is uncorrelated with the other eigenvalues. The total number
of cloud formations, Nζ can be computed from the total number of significant eigen-functions,
defined by

φsk = 1 if λk ≥ λc
= 0 if λk < λc , (7.29)

Nζ =

K∑
k=1

φsk . (7.30)

Equation (7.10) can then be written in transformed ζ space or un-transformed η space as follows

R(n)CCR = Rn + (Sn,j Uj,k) ζ
s
k (7.31)

= Rn + Sn,j (Uj,k ζ
s
k) = Rn + Sn,j η̃

s
j . (7.32)
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Multiplying both sides of Eq. (7.31) with Eq. (7.11) yields

W s
n,n

[
R(n)EST −Rn

]
= W s

n,n (Sn,j Uj,k) ζ
s
k , (7.33)

then multiplying both sides by the transpose of the transformed S-matrix yields

(Uk,j)
T (Sj,n)T W s

n,n

[
R(n)EST −Rn

]
= (Uk,j)

T (Sj,n)T W s
n,n Uj,k Sn,j ζ

s
k , (7.34)

and the least squares determination of the extrapolation parameters would be

ζsk =
[
(Uk,j)

T (Sj,n)T W s
n,n Sn,j Uj,k

]−1
(Uk,j)

T (Sj,n)T W s
n,n

[
R(n)EST −Rn

]
, (7.35)

however, the inverse can be replaced with Eq. (7.28)

ζsk = (Λk,k)
−1 (Uk,j)

T (Sj,n)T W s
n,n

[
R(n)EST −Rn

]
(7.36)

=

(
1

λk

)
(Uk,j)

T (Sj,n)T W s
n,n

[
R(n)EST −Rn

]
. (7.37)

Equation (7.36) is exactly equal to the transform of Eq. (7.22)

ηsj = Uj,k ζ
s
k , (7.38)

however, we can now remove the ζ associated with low eigenvectors

ζ̃sk =
φsk
λk

(Uk,j)
T (Sj,n)T W s

n,n

(
R(n)EST −Rn

)
, (7.39)

η̃sj ≡ Uj,k ζ̃sk = Uj,k
φsk
λk

(Uk,j)
T (Sj,n)T W s

n,n

[
R(n)EST −Rn

]
, (7.40)

where η̃sj is the extrapolation parameters from the damped least squares solution.
Discarding low eigenvalues reduces the noise amplification factor by suppressing noise in the

solution for η, resulting in lower values of η. the values of ηsj are used in Eq. (7.6) to determine the
cloud cleared radiance.
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Chapter 8

Description of the Core Retrieval
Algorithm
Step IV: The Physical Retrieval
Algorithm

8.1 Inverse Problem

The retrieval of geophysical quantities, such as the atmospheric water, from satellite radiances is
highly non-linear, requiring inversion of the equations of the form

Rn(ν,X) ≈
∫
ν

Φν

∫
p
B[T (p)] ∂

∂p {exp[−τi(ν)]} dp dν , (8.1)

where τi(ν) is the optical depth for species i and channel ν defined as

τi(ν) ≡
∫ z(p)

∞

∑
i
κi(ν,X, . . .) dz

′ . (8.2)

It should be kept in mind that Equation (8.1) is an approximation and that the real radiative
transfer equation has non-linear components resulting from

1. the temperature dependence of the transmittance,

2. the non-linearity of the Planck function,

3. the downwelling component of the radiative transfer equation.

Brightness temperature, TBn, is usually more linear with temperature (a NUCAPS core product
EDR), provides improved numerically stability, and is a convenient way to display multi-spectral
radiance information

TBn ≡ B−1
ν0 (Rn) =

α2 ν0

loge

[
1 +

α1ν30
Rn

] . (8.3)

Usually, only radiance differences, e.g. observations minus computed, are needed in remote
sounding so that a radiance difference, ∆Rn, can be converted to a brightness temperature difference,
∆TBn, as follows

∆TBn ' ∆Rn

[
∂Bν
∂T

]−1

B−1
ν [Rn(Xs,i−1

L )]
. (8.4)

57
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8.2 Linearization of the radiative transfer equation

The first step to retrieving the atmospheric state is the linearization of the radiative transfer equa-
tion. The idea is to do a Taylor expansion integrand about a reference state, X0.

For a temperature retrieval this is accomplished by first linearizing the Planck function a the
reference temperature profile as follows:

T (z) ≡ T 0(z) + ∆T (z) (8.5)

so that

Bν [T (z)] = Bν [T 0(z)] +
∂Bν [T 0(z)]

∂T

∣∣∣
T 0(z)

∆T (z) (8.6)

In general, the radiance of the reference state, X0, can be computed. In our example, we will
consider only the atmospheric component of the radiative transfer equation:

R0
ν =

∫ ∞
z=0

Bν [T 0(z)]
∂τν(X0)

∂z
∂z . (8.7)

Everything is known within this equation except the temperature profile correction, ∆T (z). Insert-
ing Eq. (8.6) into (8.7) leaves

∆Rν = Rν −R0
ν =

∫ ∞
z=0

{
Bν [T 0(z)] +

∂Bν [T 0(z)]

∂T

∣∣∣
T 0(z)

∆T (z)

}
∂τν
∂z

dz −R0
ν , (8.8)

which can be simplified

∆Rν =

∫ ∞
z=0

∂Bν [T 0(z)]

∂T

∣∣∣
T 0(z)

∂τν
∂z

∆T (z) dz , (8.9)

Then defining a kernel function as

K(z, ν) ≡ ∂Bν [T 0(z)]

∂T

∣∣∣
T 0(z)

∂τν
∂z

, (8.10)

results in a linearized radiance transfer equation as

∆Rν =

∫ ∞
z=0

K(z, ν) ∆T (z) dz . (8.11)

Thus, the frequency dependence of the Planck function and the temperature dependence of
the transmittance are both ignored. Note that for unapodized interferometers and broad band
instruments this expansion is not justified. For narrowband channels (e.g., tens of cm−1, like
MODIS, HIRS, etc.) an effective Planck function can be computed by integration over the band
pass. For an un-apodized interferometer the side-lobes are significant for 100’s of cm−1. The
linearization of the integrand is one of the principal reasons for use of apodized interferometer
spectra.

Equation (8.11) can be approximated by a numerical integral which has the advantage of being
solved by matrix inversion.

∆Rn ≈
NL∑
L=1

[∆z(L)K(n,L)] ∆T (L) = K̃n,L ∆T (L) . (8.12)
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The thickness of the layer for the finite difference form is usually absorbed into the definition of K,
written as K̃ above.

As an example, For Nν = 3 and Nz = 4 the matrix would look like:

∆R(ν(1))
∆R(ν(2))
∆R(ν(3))

 = ∆z

K(z(1), ν(1)) K(z(2), ν(1)) K(z(3), ν(1)) K(z(4), ν(1))
K(z(1), ν(2)) K(z(2), ν(2)) K(z(3), ν(2)) K(z(4), ν(2))
K(z(1), ν(3)) K(z(2), ν(3)) K(z(3), ν(3)) K(z(4), ν(3))




∆T (z(1))
∆T (z(2))
∆T (z(3))
∆T (z(4))

 ,
(8.13)

which can be written in matrix form as (the ∆z component is included in the matrix Kn,L):

∆Rn = Kn,L∆TL . (8.14)

If Nν is greater than Nz then there are more equations than unknowns and an inverse for Kn,L

exists, K−1
L,n, then the correction to the initial temperature profile can be found as follows:

K−1
L,n ∆Rn = K−1

L,nKn,L∆TL = ∆TL , (8.15)

∆TL = K−1
L,n ∆Rn =

[
KT
L,nKn,L

]−1
KT
L,n ∆Rn . (8.16)

where we employ the definition of a an inverse of a non-square matrix to find the expression for
K−1 as follows

Kn,LK
−1
L,n = In,n

KT
L,n

(
Kn,LK

−1
L,n

)
= KT

L,n In,n(
KT
L,nKn,L

)
K−1
L,n = KT

L,n

K−1
L,n =

(
KT
L,nKn,L

)−1
KT
L,n . (8.17)

Unfortunately, Nν is usually much smaller than Nz. This is because the kernel functions tend to
overlap and, therefore, are not independent. This is a condition generally referred to as information
redundancy which makes the inversion equation ill-posed. Least squares techniques need to be
applied and the solution for ∆T can be found by iterative techniques. The above expression is
generalized as follows. Using the notation of the generalized sensitivity matrix, Sn,L, in place of the
traditional kernel function, Kn,L the unconstrained expression to be solved has the form of

∆Rn = Rn − f(XL) = Sn,L ∆XL . (8.18)

The inverse solution is given by:

∆XL = S−1
L,n ∆Rn . (8.19)

Again, from the definition of an inverse

Sn,L S
−1
L,n = In,n (8.20)

STL,n

(
Sn,L S

−1
L,n

)
= STL,n In,n (8.21)(

STL,n Sn,L
)
S−1
L,n = STL,n , (8.22)
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therefore, for a non-square matrix, Sn,L, the inverse is given by

S−1
j,n =

[
STL,nSn,L

]−1
STL,n . (8.23)

So that Eq. (8.19) becomes

∆XL =
[
STL,n Sn,L

]−1
STL,n∆Rn . (8.24)

In addition to the redundancy problem, ∆Rn has a large fraction of noise (due to low signal-
to-noise related to the low temperatures) which makes the solution unstable. Careful attention
must be given to the select channels containing the maximum amount of unique information from
the spectra and with the lowest instrumental noise. See ahead the section on the channel selection
methodology. To take into account the noise problem, a weighted least squares solution can be
computed

∆XL =
[
STL,nWn,nSn,L

]−1
STL,nWn,n∆Rn . (8.25)

Another critical problem is represented by the fact that the kernel functions Sn,L are very
broad functions and, therefore, are insensitive to high frequency oscillations in ∆XL. As a result,
the inversion process usually converges with unrealistic vertical profiles.

In the most crude sense, regularization is the stabilization of the inverse by adding something
to the matrix to avoid an in-determinant solution (i.e., a zero divided by zero). This, in effect, will
dampen the solution, ∆XL, and make it “stick” to the previous iteration. This results in a need for
a background term, Ψn, in order to iterate the solution

∆XL =
[
STL,nWn,n Sn,L +HL,L

]−1
STL,nWn,n (∆Rn − Φn) . (8.26)

The atmospheric state, Xs
L, and the error estimate of that state, δXs

L, are used to minimize the
residuals in observed minus computed radiances in each retrieval step s.

8.3 The Physical Retrieval Algorithm

The current NUCAPS retrieval system is a modular set of retrieval steps. Each retrieval step
solves for certain parameters while holding all others constant. The geophysical state of the clear
atmosphere, Xs,i

L , at a given retrieval step, s, and iteration, i, is given in Table 8.1.
Each step solves for specific geophysical parameters while holding others constant. The pa-

rameters considered as error sources in the error covariance matrix are shown in the table. Some
parameters are not accurately known and, therefore, they are only considered on the diagonal of
the error covariance matrix. These are shown with a dagger symbol, †.

Each step uses its own subset of channels. If the error covariance matrix is large for a given
channel or it has large spectroscopic uncertainties then it is permanently removed from the compu-
tation. This has obvious improvements for execution time and it also improves results, since error
estimates and damping are the least accurate components of the retrieval process.

The clear column radiance is calculated from the NF FOV’s using the equation:

R(n)CCR = Rn +

NF∑
j=1

(
Rn −Rn,NF+1−j

)
η̃s,ij (8.27)

It is possible for the cloud cleared radiance observations to be close to zero or even negative due
to instrumental noise and cloud clearing errors. Therefore, we never attempt to compute a clear
column brightness temperature from these radiances.
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Table 8.1: Definition of the Geophysical State, Xs,i
L , in the NUCAPS Algorithm

T (p) vertical temperature profile
q(p) vertical water vapor profile (7.7 g/kg @ surface)
L(p) vertical liquid water profile
O3(p) vertical ozone profile (0.4 ppmv, 8ppmv @ 6 hPa))
Ts surface temperature
ε(ν) spectral surface emissivity
ρ�(ν) spectral surface reflectivity of solar radiation
CO2(p) carbon dioxide profile
CH4(p) methane profile
CO(p) carbon monoxide profile
N2O(p) nitrogen oxide profile
SO2(p) sulfur dioxide profile
HNO3 nitric acid profile

The retrieval algorithm minimizes the weighted difference between the clear column radiance

observations, R(n)CCR, and radiances computed using a forward model, Rn

(
Xs,i
N

)
, by varying the

geophysical state, Xs,i
L , where i is the iteration number within the current retrieval step, s. The

forward model at iteration i = 1 uses the previous iteration’s retrieved geophysical state, Xs,i
L . For

s = 1, i = 1, X1,1
L comes from a first guess (climatology) and for s > 1, i = 1 the retrieval uses the

result from the last iteration, I + 1, from the previous step as a first guess, Xs,1
L = Xs−1,I+1

L .
For multi-spectral retrievals the radiances can vary many orders of magnitude over the spectral

regions (e.g., microwave, long-wave infrared, and short-wave infrared). To maintain numerical
precision it is desirable to normalize the “obs−calc” (O-C). We would like to mimic a brightness
temperature difference and we can approximate this by

For infrared channels we compute O-C as given by (8.28):

∆T s,iB,n ≡
[
R(n)CCR −Rn

(
Xs,i
N

)] [∂Bν
∂T

]−1

B−1
ν (Rn(Xs,i

N ))

, (8.28)

while for microwave channels, where the data is given in brightness temperature, a brightness
temperature difference can be computed as

∆T s,iB,n ≡
[
TB,n,CCR − TB,n

(
Xs,i
L

)]
, (8.29)

where TB,n,CCR is either the observed microwave brightness temperatures or the average of the 9
brightness temperatures within the ATMS field of regard.

8.4 Specification of Geophysical Functions

A change to a group of the geophysical state are represented by a geophysical perturbation pa-
rameters, ∆As,ij , and an associated perturbation function, F sL,j . This is the generalized sensitivity
matrix. For vertical profiles, such as T (p), q(p), O3(p), the perturbation function, F sL,j = F sj (p), is a
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Table 8.2: Retrieval Steps in NUCAPS v2.0 Algorithm

s solve for step name computational error sources CrIS ATMS
in error covariance channels channels

1 T (p), ε(ν), Ts MIT q(p), L(p) 12
2 q(p), L(p) MIT T †(p), Ts, ε(ν), ρ�(ν) 3

3 T (p), ε(50.3), Ts AMSU(Ts) q(p), L(p) 11
4 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
5 Rccr ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
6 T (p), q(p), O3(p) RT NOAA 1680
7 Ts, ε(ν), ρ�(ν) RT NOAA 1680
8 T (p), ε(50.3), Ts AMSU(Ts) Rccr(ν), q(p), L(p) 11

9 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
10 Rccr ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
11 Ts, ε(ν).ρ�(ν), q SURFACE T †(p) 25
12 T (p) TEMP Rccr(ν), q(p), O3(p), L(p), Ts, 108 7

ε(ν), ρ�(ν), CO2

13 q(p) WATER Rccr(ν), T †(p), L(p), Ts, 44 3
εmw(f), ρ�(ν), CH4(p)

14 O3(p) OZONE Rccr(ν), q(p), Ts, ε(ν) 34
15 ((T (p), ε(50.3))) AMSU(RJ) Rccr(ν), q(p), L(p), Ts 11

16 Pcld(i), αcld(i) ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
17 Rccr ETA T †(p), q†(p), Ts, ε(ν), ρ�(ν) ≤ 58
18 Ts, ε(ν), ρ�(ν) SURFACE Rccr(ν), T †(p), q†(p) 25
19 T (p) TEMP Rccr(ν), q(p), O3(p), L(p), Ts, 124 7

ε(ν), ρ�(ν), CO2

20 CO(p) CO Rccr(ν), T (p), q(p), Ts 36
21 CH4(p) CH4 Rccr(ν), T (p), q(p), Ts 71
22 CO2 CO2 Rccr(ν), T (p), q(p), Ts 70

O3, ρ�(ν)

23 HNO3(p) HNO3 Rccr(ν), T (p), q(p), Ts 8
24 N2O(p) N2O Rccr(ν), T (p), q(p), Ts 52
25 SO2(p) SO2 Rccr(ν), T (p), q(p), Ts 63

† indicates that off-diagonal elements are not used

trapezoid (with dimensionless maximum value of 1.0) covering a vertical range of layers. For spectral
parameters such as ε(n) and ρ(n), F sL,j = F sj (ν) is a wedge or triangle covering a range of frequencies
with a dimensionless peak value of 1.0. For surface temperature and microwave emissivity F sL,j is a
value equal to unity. These are summarized in the following table:.

Temperature functions are expressed as additive vertical trapezoids, the atmospheric profile
being

T s,i+1(p) = T s,i(p) +
∑

j
F sj (p) ∆As,i+1

j , (8.30)

and the surface skin temperature being

T s,i+1
s = T s,is + F sj ∆As,i+1

j . (8.31)
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Table 8.3: Scale Size of Perturbation Functions in v2.0

∆Âsj

retrieval step Ts ε(ν) ρ(ν) T (p) q(p) trace

RETAMSU 1K 1% 1K
RETSURF 3K 1% 0.5% 3K 20%
RETTMP 1K
RETWATR 10%
RETOZON 10%

RET CO 10%
RET CH4 2%
RET CO2 1%

RET HNO3 20%
RET N2O 5%
RET SO2 50%

Composition functions are expressed as multiplicative vertical trapezoids. The radiance kernel

is ∝ exp
[
κ(Xs,i

L )
]

and κ(Xs,i
L ), is the optical depth ∝ Xs,i

L . Therefore, composition variables are

more linear in ln
(
Xs,i
L

)
, with ∂ ln(Xs,i

L ) ∝ ∂Xs,i
L

Xs,i
L

being a % change in Xs,i
L ; thus

qs,i+1(p) = qs,i(p)
[
1 +

∑
j
F sj (p) ∆As,i+1

j

]
. (8.32)

Emissivity functions are expressed as additive spectral triangles

εs,i+1(n) = εs,i(n) +
∑

j
F sj (ν) ∆As,i+1

j . (8.33)

The scaling parameter Âsj is used to create dimensionless parameters and adjust scale between
different functional groups (e.g., when mixing T (p), q(p), and emissivity in one retrieval). The
Jacobian, Ks,i

n,L, becomes a set of new derivatives, Ss,in,j , in which groups of parameters in L space
are grouped together in J space. Subsets (e.g., temperature) of vertical and spectral functions must

sum to unity:
∑

j

(
F sL,j

)
= 1 for a group of functions.

The entire geophysical state is expressed as a vector XL, with associated geophysical perturba-
tion functions ∆XL,j = F sL,j ⊗∆Âsj and perturbation parameters ∆As,ij . The ⊗ symbol represents
a scale factor for F sL,j and not a matrix multiply and is equivalent to an identity matrix multiplica-

tion, F sL,j ⊗∆Âsj ≡ F sL,j Ij,j ∆Âsj . For vertical functions the index L will specify pressure intervals
while for spectral parameters the functions will represent frequency intervals and L will specify the
channel numbers, n. For other functions, such as skin temperature the function is a value that is,
the index L is single valued, and there is only one value of j

Xs,i+1
L = Xs,i

L +
∑

j

(
F sL,j ⊗∆Âsj

)
∆As,i+1

j . (8.34)

The sensitivity matrix, Ss,in,j , is calculated for each channel n and each geophysical parameter,
denoted by index j, to be solved for in the current retrieval step, s, and iteration, i. The sensitivity
matrix is computed for a pre-set perturbation functions, F sL,j ⊗∆Âsj as follows
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For additive functions the S-matrix is given by

Ss,in,j ≡ ∆Âsj

∂Rn

(
X + F sL,jAj

)
∂Aj

∣∣∣∣∣
Xs,i
L

[
∂Bν
∂T

]−1

B−1
ν [Rn(Xs,i

N )]
(8.35)

≈
[
Rn

(
Xs,i
L + F sL,j∆Â

s
j

)
−Rn

(
Xs,i
N

)] [∂Bν
∂T

]−1

B−1
ν [Rn(Xs,i

N )]
(8.36)

for infrared channels, and for microwave channels given by

Ss,in,j ' TBn
(
Xs,i
L + F sL,j∆Â

s
j

)
− TBn

(
Xs,i
L

)
. (8.37)

For multiplicative functions the S-matrix is given by

Ss,in,j ≡ ∆Âsj

∂Rn

[
X
(

1 + F sL,j Aj

)]
∂Aj

∣∣∣∣∣
Xs,i
L

[
∂Bν
∂T

]−1

B−1
ν [Rn(Xs,i

N )]
(8.38)

≈
{
Rn

[
Xs,i
L

(
1 + F sL,j∆Â

s
j

)]
−Rn

(
Xs,i
N

)}[∂Bν
∂T

]−1

B−1
ν [Rn(Xs,i

N )]
, (8.39)

and for microwave channels

Ss,in,j ≈ TBn
[
Xs,i
L

(
1 + F sL,j ∆Âsj

)]
− TBn

(
Xs,i
L

)
. (8.40)

Analytic derivatives on the RT grid does not help the algorithm and δ-function perturbations
are sub-optimal (Backus and Gilbert). Single-sided finite differences have been used, although
the benefit of double-sided and dynamically scaled derivatives will be explored (this is not the
algorithm’s biggest error source).

8.5 Retrieval Error Covariance Matrix

The error covariance matrix, N s
n,n′ , is computed in the first iteration of every step and is the estimate

of the uncertainty in the observed minus computed effective brightness temperature difference,
∆T s,iBn. It consists of the clear column radiance error estimate, discussed earlier and computational

uncertainties in the forward calculation of Rn

(
Xs,i
N

)
. The computational uncertainty is calculated

for all geophysical parameters, X, not modified by the retrieval and, therefore, assumed known in
a given step of the retrieval process.

The radiance error estimate, Es,in,g, due to uncertainties in geophysical quantities is computed
from error estimates in geophysical groups Xs,i

L,g (e.g., an entire temperature profile). As with the
sensitivity functions, this can be thought of as an error estimate of a parameter, δAg, and an
associated function, F sg (L). The partial derivatives are calculated from the current estimate of the

geophysical state, Xs,i
L , and an estimate of the uncertainty in each geophysical group to be held

constant in this stage of the retrieval, δXs,i
L,g, and is calculated by a finite difference

For infrared channels the error estimate is converted to effective brightness temperature units
using

Es,in,g ≡ δAs,ij

∂Rn

(
Xs,i
L

)
∂Aj

∣∣∣∣∣
Xs,i
L

[
∂Bν
∂T

]−1

B−1
ν [Rn(Xs,i

N )]
(8.41)
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≈
[
Rn

(
Xs,i
L + δXs,i

L,g ⊗Qg
)
−Rn

(
Xs,i
L

)] [∂Bν
∂T

]−1

B−1
ν [Rn(Xs,i

N )]
(8.42)

and for microwave channels the computation is

Es,in,g ≈ TBn
(
Xs,i
L + δXs,i

L,g ⊗Qg
)
− TBn

(
Xs,i
L

)
. (8.43)

Since δXL,g is an RSS error estimate it can be correlated vertically and spectrally and correlated
with respect to other parameters (e.g., surface spectral emissivity error can be correlated with skin
temperature). We use Qg as a scaling to compensate for assumed anti-correlation in these error
estimated. Currently we set Qg to 0.5 for T (p) and q(p) error estimates and 1.0 for all other error
estimates.

The computational covariance matrix, Cs,in,n′ , is composed of a summation of all the radiance
error estimate for all geophysical parameters held constant during a retrieval

Cs,in,n′ ≡
∑

g
Es,in,g

(
ETg,n

)s,i
. (8.44)

The retrieval error covariance matrix is a combination of the cloud cleared radiance error co-
variance and the computational error covariance terms

N s,i
n,n′ = Csn,n′ +

[
δR(n)CCR

(
δRn′,OBS

)T
+ δRUn δn,n′

(
δRUn′

)T ][
∂Bν
∂T

]
B−1
ν [Rn(Xs,i

N )] ·
[
∂Bν
∂T

]
B−1
ν [Rn′ (X

s,i
L )]

, (8.45)

where δRUn is a small term for additional unknown sources of error which is presently computed
from

δRUn ≡ 0.1

[
∂Bν
∂T

]−1

B−1
ν [Rn(Xs,i

N )]
. (8.46)

In retrieval code the cloud-cleared radiance error estimates are computed in the routine noisecv.F
and the computation terms are computed and added to the noise covariance matrix in the individual
retrieval routines (e.g., rettmpc.F, retwatr.F, etc.)

8.6 The Retrieval of the Geophysical State

The brightness temperature difference residuals can be written in terms of a linear Taylor expansion
change to the geophysical parameters, ∆As,ij , which is dimensionless due to ∆Âsj in Eqs. (8.35) or
(8.38). In any given retrieval step, we separate the parameters we are solving for into the matrix
Ss,in,j and the parameters we are not solving for into the matrix Es,in,g. If it is assumed for the moment

that the value of the parameters not being solved for are known, such that Es,in,g could be known,
the following could be written

∆T s,iBn = Ss,in,j ∆As,i+1
j +

∑
g

±Es,in,g . (8.47)

But the sign of the errors are not known in the parameters not being solved for, otherwise that
uncertainty could be eliminated. At best there is only an estimate for the covariance and spectral
correlation of these uncertainties, therefore,

∑
g ±E

s,i
n,g enters into the error covariance matrix via
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Eqs. (8.44) and (8.45) so that the brightness temperature residuals, ∆T s,iBn, can be related to the
parameters being solved for via(

N s
n,n

)−1
Ss,in,j ∆As,i+1

j =
(
N s
n,n

)−1
∆T s,iBn (8.48)(

STj,n
)s,i (

N s
n,n

)−1
Ss,in,j ∆As,i+1

j =
(
STj,n

)s,i (
N s
n,n

)−1
∆T s,iBn . (8.49)

The assumption that is implicit here is that properly weighted geophysical parameter errors,(
N s
n,n

)−1∑
g ±E

s,i
n,g, are uncorrelated with the parameters we are trying to solve for. That is, the

properly weighted equation is one that has the smallest standard deviation.
The change required to the parameters can be solved in a weighted least-squares sense. If there

were no damping then the solution would be given by

∆As,i+1
j (0) =

[(
STj,n

)s,i (
N s
n,n

)−1
Ss,in,j

]−1 (
STj,n

)s,i (
N s
n,n

)−1
∆T s,iBn (8.50)

however, this solution would be highly unstable, given the under-determined nature of atmospheric
retrievals. The adjustment to the parameters is found by solving for the eigenvalues, λs,ik , and

eigenvector transformation matrix, U s,ij,k, of
(
STj,n

)s,i (
N s
n,n

)−1
Ss,in,j , such that

Λs,ik,k ≡
(
UTk,j

)s,i (
STj,n

)s,i (
N s
n,n

)−1
Ss,in,jU

s,i
j,k . (8.51)

Press et. al (1986) (pp. 350–363) provide Fortran routines for computing λs,ik and U s,ij,k. The

2-D matrix Λs,ik,k has only diagonal elements equal to λs,ik . The transformation matrix, U s,ij,k, can be

thought of as a transformed sensitivity matrix given by Ss,in,j U
s,i
j,k. At this point in the derivation we

have not changed anything except how we are computing the inverse. Note that when computing[
Λs,ik,k

]−1
any components of λk < (0.05)2 λsc are set to zero, that is we remove the singular val-

ues. When λk is approaching zero both the numerator and denominator are tending toward zero.
Therefore, setting those components of ∆As,i+1

k (0) to zero is most logical

∆As,i+1
j (0) = U s,ij,k

1

λs,ik

(
UTk,j

)s,i (
STj,n

)s,i (
N s
n,n

)−1
∆T s,iBn . (8.52)

These new optimal functions can be utilized to compute a change made in transformed param-
eter space, is given by ∆Bs,i+1

k (0). Solving Eq. (8.55)

∆T s,iBn = Ss,in,jU
s,i
j,k ∆Bs,i+1

k (0)(
N s
n,n

)−1
∆T s,iBn =

(
N s
n,n

)−1
Ss,in,j U

s,i
j,k ∆Bs,i+1

k (0)(
UTk,jS

T
j,n

)s,i (
N s
n,n

)−1
∆T s,iBn =

(
UTk,jS

T
j,n

)s,i (
N s
n,n

)−1
Ss,in,j U

s,i
j,k ∆Bs,i+1

k (0)(
UTk,j

)s,i (
STj,n

)s,i (
N s
n,n

)−1
∆T s,iBn = Λs,ik,k ∆Bs,i+1

k (0) , (8.53)

and

∆Bs,i+1
k (0) =

[
Λs,ik,k

]−1 (
UTk,j

)s,i (
STj,n

)s,i (
N s
n,n

)−1
∆T s,iBn

∆Bs,i+1
k (0) =

1

λs,ik

(
UTk,j

)s,i (
STj,n

)s,i (
N s
n,n

)−1
∆T s,iBn . (8.54)
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Again, note that when computing
[
Λs,ik,k

]−1
any values of ∆Bs,i+1

k (0) are set to zero when λk <

0.052λsc. When λk is approaching zero both the numerator and denominator are tending toward
zero, therefore, setting ∆Bs,i+1

k (0) to zero is most logical.
And note that the transformed parameters are related to the original parameters by the eigen-

vectors
∆T s,iBn = Ss,in,j ∆As,i+1

j = Ss,in,j U
s,i
j,k ∆Bs,i+1

k . (8.55)

Equation (8.55), that is, that ∆As,i+1
j = U s,ij,k ∆Bs,i+1

k , is also a statement that the original
functions Eq. (8.34) have been transformed to new optimal functions

Xs,i+1
L = Xs,i

L +
∑
j

(
F sL,j ⊗∆Âsj

)
∆As,i+1

j =
∑
j

(
F sL,j ⊗∆Âsj

)
U s,ij,k ∆Bs,i+1

j . (8.56)

If no damping is required the change made in transformed parameter space, is given by ∆Bs,i+1
k (0).

Combining Eqs. (8.50) and (8.55) yields

∆As,i+1
j (0) = U s,ij,k∆B

s,i+1
k (0) = U s,ij,k

1

λs,ik

(
UTk,j

)s,i (
STj,n

)s,i (
N s
n,n

)−1
∆T s,iBn (8.57)

The changes can be damped by adding a value of ∆λs,ik to the λs,ik such that λs,ik ≥ λ
s
c. This limits

the noise in ∆B to a maximum value

δBs
max ≡ 1√

λsc
or (8.58)

λsc ≡
(

1

δBs
max

)2

. (8.59)

The damping parameter, δBs
max is determined empirically for each step. Therefore, the fraction of

the transformed function solved for is defined as

φs,ik ≡
λs,ik

λs,ik + ∆λs,ik
(8.60)

which is a diagonal matrix and where φs,ik = 0 represents a parameter which is completely damped

and φs,ik = 1 is completely solved for. For completely damped eigenvalues, the change to the
geophysical parameters is set to zero and the first guess is unchanged for that component of the
solution.

The size of λs,ik and, therefore, λsc will be proportional to the size of the perturbation functions,

∆
(
Âsj

)2
(see Eqs. (8.35) or (8.38)).

The degrees of freedom (DOF) is given by the sum of the significant eigenvalues. Given that
damping has been employed, the DOF is given by

DOF =
K∑
k=1

φs,ik =
K∑
k=1

λs,ik
λs,ik + ∆λs,ik

. (8.61)

The damped change made to the transformed parameters is given by ∆Bs,i+1
k ≡ φs,ik ∆Bs,i+1

k (0)
which makes the damped change equal to

∆As,i+1
j = U s,ij,k∆B

s,i+1
k = U s,ij,kφ

s,i
k

1

λs,ik

(
UTk,j

)s,i (
STj,n

)s,i (
N s
n,n

)−1
∆T s,iBn . (8.62)
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Therefore, the difference between ∆As,i+1
j and ∆As,i+1

j (0) is the amount of the solution we did not

believe. If Eq. (8.62) is to be iterated we will ultimately believe all of ∆As,i+1
j (0). Therefore, the

radiances need to be adjusted.

8.7 Rejection Criteria

A profile is rejected if any of the conditions itemized below is true. The # refers to the step # in
Table 8.2.

• A row of Ss,in,j is zero. That is all Ss,in,j for a given j are zero in any step.

• The determined cloud fraction within ATMS footprint exceeds 80% (step # 18).

• The cloud clearing quality indicator (etarej in previous chapter) exceeds 3 on the cloud
clearing after the NOAA regression (step # 12).

• The effective amplification factor exceeds 30.

• (Not used any longer, but listed for reference): The final temperature profile (step # 21) and
the temperature profile from the preceding AMSU temperature retrieval (step # 17) disagree
in the RMS of the bottom two 1-km layers by 2◦[

1

2

2∑
k=1

(
F sL,k ⊗ T s=21

L − F sL,k ⊗ T s=17
L

)2] 1
2

≥ 2◦ , (8.63)

where F sL,k are two functions that averages the lower ≈ 1 km layers.

• The RMS of O-C brightness temperatures exceed 2.5 for a sub-set of ATMS channels (currently
ATMS channels, . . . , are used after step # 21)


L∑
n=1

(
1

NE∆T

)2 (
TB,n,CCR − TB,n(Xs=21

L )
)2

∑
n=1

(
1

NE∆T

)2


1
2

≥ 1.75◦ (8.64)

• If the amplification factor exceeds 5.0 and the retrieval cloud fraction is between 65% and 80%
and there is more than 10% of the cloudiness with cloud top pressure exceeding 500 hPa after
step # 19.

• The quality indicator from final surface retrieval exceeds 4 (step # 20)

• The quality indicator from final temperature retrieval exceeds 4 (step # 21)

• The quality indicator from final water vapor retrieval exceeds 5
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Chapter 9

Validation

9.1 Sounder Validation Methodologies

This section overviews the sounder validation methodology, which is generally applicable to oper-
ational products obtained from the NUCAPS CrIS/ATMS, IASI and AIRS systems. Section 9.1.1
focuses on EDRs required to be validated on profile layers (viz., temperature, water vapor and
ozone), whereas Section 9.1.2 focuses on carbon trace gas EDRs required only to be validated on
total atmospheric columns. Validation results for SNPP NUCAPS are discussed in Section 9.2.

9.1.1 T/H2O/O3 Profile Validation

The standard methodology and theoretical basis for validation of satellite sounder retrieved atmo-
spheric temperature, moisture and ozone profile EDRs was formalized by Nalli et al. (2013) and is
overviewed here. Sounder profile EDR validation is performed versus a quasi-independent baseline
measurement often referred to as “truth” data. Because validation is an ongoing process, a sounder
validation hierarchy paradigm has been established based roughly upon the relative strengths of
the datasets used (Barnet, 2009; Nalli et al., 2013). Techniques/datasets at the beginning of the
hierarchy are those typically used at the early stages of EDR validation (i.e., early in the satellite
mission), whereas those near the end are typically applied in the later stages. For example, the
Joint Polar Satellite System (JPSS) cal/val program has adopted a phased approach to cal/val over
the satellite mission lifetimes (Barnet, 2009; Zhou et al., 2016).

1. Numerical Model Global Comparisons. Numerical weather prediction (NWP) models (e.g.,
ECMWF, NCEP/GFS) allow for large, truly global samples acquired from global “Focus
Days”; they are useful for sanity checks, bias tuning and regression, but are otherwise not
considered independent truth data.

2. Satellite EDR Intercomparisons. As with NWP models, intercomparisons with other inde-
pendent satellite EDRs (e.g., AIRS, COSMIC) allow for global samples acquired from Focus
Days, however other sensors (e.g., AIRS) may have similar error characteristics, and a rigorous
assessment would need to account for the averaging kernels of both systems (e.g., Rodgers
and Connor, 2003).

3. Conventional Radiosonde Matchup Assessments. World Meteorological Organization (WMO)
operational radiosondes launched '2/day for NWP can be collocated with satellite overpasses
within broad space-time matchup windows to allow characterization of the satellite EDRs ver-
sus in situ measurements with representation of global zones and large samples within a couple

70
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month’s acquisition period (e.g., Divakarla et al., 2006; Reale et al., 2012). This technique
also facilitates long-term monitoring. However, limitations include skewed distribution toward
NH-continents, mismatch errors (Sun et al., 2010) (potentially systematic at individual sites),
and the assimilation of these data into NWP models, thereby limiting their independence.

4. Dedicated/Reference Radiosonde Matchup Assessments. Dedicated radiosondes are purchased
for the explicit purpose of satellite validation, these generally being state-of-the-art (e.g.,
Vaisala) sondes that are launched synchronized in space and time with satellite overpasses,
thereby minimizing measurement and mismatch uncertainties. Reference sondes (e.g, cryo-
genic frost-point hygrometer, GRUAN-corrected sondes) are traceable measurements typically
including uncertainty estimates. While these datasets provide an optimal truth measurement
(with minimized combined measurement uncertainties), they are limited by relatively small
sample sizes and sparse geographic coverage.

5. Intensive Field Campaign Assesements/Dissections. Intensive field campaigns (e.g., SNAP,
AEROSE, CalWater/ACAPEX, ERR, JAIVEX, AWEX-G,
EAQUATE) typically include dedicated RAOBs (some not assimilated into NWP models) and
ancillary datasets (e.g., ozonesondes, lidar, MAERI, sunphotometer, etc.); ideally they also
include a funded aircraft IR sounder (e.g., NAST-I, S-HIS) for SDR cal/val. The combination
of these datasets enables detailed performance specification, geophysical state specification,
as well as deep-dive case studies.

The Joint Polar Satellite System (JPSS) Level 1 Performance Requirements for temperature
and moisture profiles are given in Tables 9.1 and 9.2, respectively. The requirements are defined for
global, non-precipitating cases on 3–5 atmospheric “broad-layers” that are computed as an average
of 1–5 km “coarse-layers” for temperature and 2 km for moisture. “Partly Cloudy” conditions are
defined by successful cloud-clearing and IR retrieval, whereas “Cloudy” conditions are defined by
cases where cloud-clearing was not successful, thereby resulting in a MW-only algorithm solution
as the final product. These tables provide the metrics by which the system is considered to have
reached Validated Maturity and has met mission requirements (Nalli et al., 2017a).

Conversion of Profile Truth Data to Correlative Layers

Comparisons between high-resolution in situ measurements (e.g., RAOBs) with coarser-resolution
satellite EDR retrievals require that the RAOB measurements first be reduced to correlative effective
RTA layer quantities consistent with the forward model utilized by the retrieval. The approach is to
integrate column density weighted quantities from the top to the bottom of the observed atmospheric
column, interpolate those to the RTA layer boundaries (i.e., levels), then compute the RTA layer
quantities from the interpolated level values. MATLAB and Fortran programs, conv layers.m

and conv layers.F, has been developed for calculating performing the reduction to layers. The
theoretical basis (after Nalli et al., 2013) is overviewed below.

Effective layer pressures, pL, are defined as pL ≡
∫ zl
zl+1

p(z) dz/
∫ zl
zl+1

dz where z is geopotential

height, and subscripts l denote layer boundaries (i.e., levels). It can be shown that for the nl = 101
standard RTA standard pressure levels (Strow et al., 2003), the nL = nl − 1 = 100 RTA layer
pressures can then be derived as (Nalli et al., 2013)

PRTA,L =
Pl+1 − Pl

ln(Pl+1/Pl)
, l = L = 1, 2, . . . , nL , (9.1)
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Table 9.1: JPSS Level 1 Requirementsa for CrIS/ATMS Atmospheric Vertical Temperature Profile
(AVTP) EDR Measurement Uncertainty

JPSS Global AVTP Measurement Uncertainty Requirementb

Atmospheric Broad-Layer Threshold Objective

Cloud-Free to Partly Cloudy (IR+MW)c

Surface to 300 hPad (1 km layers) 1.6 K 0.5 K

300 hPa to 30 hPa (3 km layers) 1.5 K 0.5 K

30 hPa to 1 hPa (5 km layers) 1.5 K 0.5 K

1 hPa to 0.5 hPa (5 km layers) 3.5 K 0.5 K

Cloudy (MW-only)e

Surface to 700 hPa (1 km layers) 2.5 K 0.5 K

700 hPa to 300 hPa (1 km layers) 1.5 K 0.5 K

300 hPa to 30 hPa (3 km layers) 1.5 K 0.5 K

30 hPa to 1 hPa (5 km layers) 1.5 K 0.5 K

1 hPa to 0.5 hPa (5 km layers) 3.5 K 0.5 K

a Source: Joint Polar Satellite System (JPSS) Program Level 1 Requirements Supplement – Final, Version 2.10, 25

June 2014, NOAA/NESDIS.
b Expressed as an error in layer average temperature.
c Partly cloudy conditions are those where both the IR and MW retrievals are used and are typically scenes with

≤ 50% cloudiness.
d The IR+MW surface to 300 hPa requirement is for over global ocean. Over land and ice mass, the Uncertainty

is relaxed slightly to 1.7 K due to the state of the science of the land emissivity knowledge within the temperature

sounding algorithm.
e Cloud conditions are those where only the MW retrievals are used and are typically scenes with > 50% cloudiness.

where uppercase P denote RTA pressures, and subscripts L and l denote layer and level, respectively.
For correlative measurements or observations, lowercase p denotes pressure, and subscripts L

and ` denote layer and level, respectively. Generally speaking, RAOB data are at higher vertical
resolution than the RTA, with the number of RAOB points much greater than the RTA pressure
levels. Given a typical sounding measuring pressure, temperature and humidity (PTU), the number
density (molecules/cm3) for air is given (in CGS units) by (e.g., Wallace and Hobbs, 1977)

Na,`(p`, T`) = 103 p`
k T`

, ` = 1, 2, . . . , n` , (9.2)

where k is the Boltzmann constant in ergs, p` and T` are pressure (hPa) and temperature (K)
measured at observation level `, and the 103 factor converts pressure from hPa to dPa. Number
densities for moisture and ozone, Nw,` and No,` (molecules/cm3), are calculated from the radiosonde
measurements of relative humidity (RH) % and O3 partial pressure (mPa). For ozone the total
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Table 9.2: JPSS Level 1 Requirementsa for CrIS/ATMS Atmospheric Vertical Moisture Profile
(AVMP) EDR Measurement Uncertainty

JPSS Global AVMP Measurement Uncertainty Requirementb

Atmospheric Broad-Layer Threshold Objective

Cloud-Free to Partly Cloudy (IR+MW)c

Surface to 600 hPa greater of 20% or 0.2 g kg−1 10%

600 hPa to 300 hPa greater of 35% or 0.1 g kg−1 10%

300 hPa to 100 hPa greater of 35% or 0.1 g kg−1 10%

Cloudy (MW-only)d

Surface to 600 hPa greater of 20% or 0.2 g kg−1 10%

600 hPa to 300 hPa greater of 40% or 0.1 g kg−1 10%

300 hPa to 100 hPa greater of 40% or 0.1 g kg−1 NS

a Source: Joint Polar Satellite System (JPSS) Program Level 1 Requirements Supplement – Final, Version 2.10, 25

June 2014, NOAA/NESDIS.
b Expressed as a percent of average in 2 km layers.
c Partly cloudy conditions are those where both the IR and MW retrievals are used and are typically scenes with

≤ 50% cloudiness.
d Cloud conditions are those where only the MW retrievals are used and are typically scenes with > 50% cloudiness.

atmospheric pressure in (9.2) is replaced with the measurement of O3 partial pressure (in mPa) and
multiplied by a factor of 10−2 to convert to dPa. Similarly, number density for water vapor can be
obtained by replacing the total pressure p` in Eq. (9.2) by the water vapor partial pressure, e`. The
vapor pressure can be calculated directly from RAOB RH as (e.g., Stull, 2000)

e` = es(T`)
RH

100%
, (9.3)

where es is the saturation vapor pressure (SVP) for temperature T`. Because radiosondes typically
measure RH, Eq. (9.3) requires the calculation of SVP (es) (Miloshevich et al., 2006; Wexler, 1976;
Hyland and Wexler, 1983). The H2O number density can be calculated from mass mixing ratio (r`)
as

Nw,`(p`, T`, r`) = 103 p`
(1 + ε/r`) k T`

, ` = 1, 2, . . . , n` . (9.4)

where ε is the ratio of the molecular masses of water vapor and dry air, ε ≡Mw/Md ≈ 0.622.
Integrated column abundances (from the top measurement zt to the measurement level height

z) for atmospheric species x (molecules/cm2), defined as

Σx(z) ≡
∫ z

zt

Nx(z′) dz′ , (9.5)
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are calculated as

Σx(z) ≈ Σx,L ≡
nL∑
L
Nx,L δzL , L = ` = 1, 2, . . . , nL (9.6)

≈
n∑̀
`

(
Nx,`+1 +Nx,`

2

)
(z`+1 − z`) , (Nx,`+1 ∧Nx,`) > 0 .

where Nx,L δzL are the nL = n` − 1 fine-layer (geopotential thicknesses δzL ≡ z`+1 − z`) mean
abundances.

In a similar manner, the temperature profile is integrated weighted by the air number density,

ΣT (z) ≡
∫ z

zt

T (z′)Na(z
′) dz′ , (9.7)

which is calculated as

ΣT (z) ≈ ΣT,L ≡
nL∑
L
TLNa,L δzL , L = ` = 1, 2, . . . , nL , (9.8)

≈
n∑̀
`

(
T`+1 + T`

2

)(
Na,`+1 +Na,`

2

)
(z`+1 − z`) , (Na,`+1 ∧Na,`) > 0 .

The calculations from Eqs. (9.6) and (9.8) are linearly interpolated to the truncated RTA
pressure vector P (spanning the measured column), and simply denoted Σx,L(P) and ΣT,L(P),
respectively. P is defined as RTA pressure levels Pl including the observed surface and top levels.
The top RTA level l0 is defined simply as the level just below the top observed pressure level, p0

(e.g., at balloon burst altitude). Because of variable terrain and surface pressure, the bottom level,
lb, is defined consistent with the RTA calculation used in the retrieval algorithm. The interpolation
vector P is given by

P ≡

{
[pt, Plt , Plt+1, . . . , Plb−1, Plb , ps] , 0 < ps − Plb < 5 hPa

[pt, Plt , Plt+1, . . . , Plb−1, ps, Plb ] , ps − Plb−1 ≥ 5 hPa .
(9.9)

Given Σx,L(P) and ΣT,L(P), the effective RTA layer quantities are calculated as follows. The
effective layer pressures PL are computed from (9.1) using the levels defined in (9.9). Given Σa,L(P)
and ΣT,L(P), the effective layer temperatures, TL(PL) are calculated as

TL(PL) =
ΣT,L(Pl+1)− ΣT,L(Pl)

Σa,L(Pl+1)− Σa,L(Pl)
, l = L = 1, 2, . . . ,mL , (9.10)

where mL is the length of vector P. Given Σx,L(P), and TL(PL) from (9.10), effective layer water
vapor mass mixing ratio (g/kg relative to dry air) is calculated as

rw,L(PL) = ε · 103 Σw,L(Pl+1)− Σw,L(Pl)

Na,L δzL − [Σw,L(Pl+1)− Σw,L(Pl)]
, (9.11)

where ε ≡Mw/Md ≈ 0.622 (Mw and Md the molecular weights of water and dry air, respectively),
and the atmospheric mean layer abundance is given by

Na,L δzL ≡ 103 PL

k TL(PL)
δzL , (9.12)
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and δzL ≡ z(Pl) − z(Pl+1). Likewise, the effective layer ozone volumetric mixing ratio (ppbv, dry
air) is calculated as

ro,L(PL) = 109 Σo,L(Pl+1)− Σo,L(Pl)

Na,L δzL − [Σw,L(Pl+1)− Σw,L(Pl)]
. (9.13)

Coarse-Layer Statistics

Given correlative truth profiles on effective RTA layers (§9.1.1), profile error statistics are computed
on coarse-layers using the SIMSTAT program developed and maintained at NOAA (separate Fortran,
MATLAB and IDL code versions have been developed). The theoretical basis for this is detailed in
Nalli et al. (2013) and overviewed below.

Temperature Profile EDR. The root mean square (RMS) temperature difference provides a
single metric that includes all deviations (systematic and random) in the matchup sample. RTA
effective layer temperatures TL are averaged to obtain coarse layer values

TL =

∑
L(L) ln

(
P`
P`−1

)
TL

ln
(

PL
PL−1

) , (9.14)

where L(L) are the RTA layers that fall within the coarse layer L. Defining the deviation of a
temperature profile retrieval from a correlative profile on nL ' 20 coarse layers at a matchup
location j as ∆TL,j ≡ T̂L,j − TL,j , the RMS deviation is given by

RMS(∆TL) =

√
1

nj

∑
nj
j=1 (∆TL,j)

2 L = 1, 2, . . . , nL , , (9.15)

where nj is the matchup sample size. The measure of sample bias is calculated simply as the mean
difference

BIAS(∆TL) ≡ ∆TL =
1

nj

nj∑
j=1

∆TL,j . (9.16)

Variability is measured by the standard deviation, σ

STD(∆TL) ≡ σ (∆TL) =

√√√√ 1

nj

[∑
nj
j=1 (∆TL,j)

2 −
(∑nj

j=1 ∆TL,j

)2
nj

]
, (9.17)

which from Eqs. (9.15) and (9.16) can be conveniently expressed in terms of the RMS and BIAS as

STD(∆TL) =

√
[RMS(∆TL)]2 − [BIAS(∆TL)]2 . (9.18)

Water Vapor and Ozone Profile EDRs. For computing vertical profile statistics of gas con-
centration EDRs (viz., H2O and O3) on coarse-layers, both retrieval and truth profiles (in RTA
layer abundances) are summed over each coarse-layer and converted to mass abundances in g/cm2.
For H2O, the RTA layer abundances are denoted as qL, and the coarse-layer mass abundances qL
are calculated as

qL =
Mw

NA

∑
L(L)

qL , (9.19)
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where Mw is H2O molecular mass, NA is Avogadro’s number, and L(L) is as above in Equation
(9.14), with the bottom partial layer Lb multiplied by the bottom-layer (BLMULT) factor

FBL ≡
ps − Plb−1

Plb − Plb−1
, (9.20)

where lb denotes the bottom layer lower boundary.
Given coarse layer abundances, qL, the fractional deviation is taken to be the absolute deviation

divided by the observed (e.g., RAOB) value

∆qL,j ≡
q̂L,j − qL,j

qL,j
, L = 1, 2, . . . , nL . (9.21)

The denominator in Eq. (9.21) can result in large ∆qL,j in dry atmospheres (e.g., mid to upper
troposphere or polar regions) and thereby skew the statistics toward these cases. Therefore, sounder
science team cal/val convention has been to implement general weighted means (as opposed to simple
arithmetic means) as the basis for the statistics:

RMS(∆qL) =

√√√√∑nj
j=1WL,j (∆qL,j)

2∑nj
j=1WL,j

, (9.22)

BIAS(∆qL) =

∑nj
j=1WL,j ∆qL,j∑nj

j=1WL,j

, (9.23)

where the water vapor weighting factor, WL,j , assumes one of three forms (W0, W1 or W2)

WL,j =


1 , W0

qL,j , W1

(qL,j)
2 , W2 .

(9.24)

W0 (WL,j = 1) reduces Eqs. (9.22) and (9.23) to arithmetic means. To minimize skewing impact of
dry atmospheres, sounder science team convention has been to use W2 for RMS Eq. (9.22). Because
JPSS Level 1 requirements for RMS were derived based upon statistics using W2 weighting, it is
reasonable that validation requirement assessments should also use this weighting (Nalli et al., 2013).
It is also suggested that BIAS calculations consistently use the W2 weighting (rather than W1) to
avoid confusion and allow compatible calculations of STD from

STD(∆qL) =

√
[RMS(∆qL)]2 − [BIAS(∆qL)]2 . (9.25)

For ozone, given a correlative ozone sounding (e.g., from an ozonesonde), statistics are calcu-
lated in a manner similar to the water vapor, namely Eqs. (9.22) and (9.23), with W2 weighting
recommended for RMS and BIAS. Once coarse-layer statistics are obtained, approximate “broad-
layer” results can be obtained simply taking the averages of coarse-layers over the broad-layers.

9.1.2 Carbon Trace Gas Validation

Unlike previous sounder systems (e.g., AIRS and IASI), the JPSS satellite sounder EDR cal/val
program has for the first time specified requirements for carbon trace gases. Because of this, the
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Table 9.3: JPSS Level 1 Requirements for CrIS Infrared Carbon Trace Gas EDR Measurement
Uncertainty∗

JPSS Measurement Uncertainty Requirements
CrIS Total Column Trace Gas EDRs∗

EDR Attribute Threshold Objective

Carbon Monoxide (CO) EDR

Precision 15% 3%

Accuracy ±5% ±5%

Carbon Dioxide (CO2) EDR

Precision 0.5% (2 ppmv) 1.05–1.4 ppmv

Accuracy ±1% (4 ppmv) NS

Methane (CH4) EDR

Precision 1% ('20 ppbv) NS

Accuracy ±4% ('80 ppmv) NS

∗Source: Joint Polar Satellite System (JPSS) Program Level 1 Requirements Supplement – Final, Version 2.10, 25

June 2014, NOAA/NESDIS.

validation methodology is less well-established in the literature than the T/H2O/O3 profile EDRs
described in Section 9.1.1, with a primary difference being the fact that there simply does not exist
the equivalent of widespread in situ radiosonde network truth datasets for carbon trace gas profiles.
Owing to this fact regarding the lack of a “radiosonde” for trace gases, JPSS requirements are
defined for total column quantities as given in Table 9.3.

In the effort to meet these validation requirements, a similar “validation hierarchy” to that
formalized for T/H2O/O3 (§9.1.1) has been devised at NOAA/NESDIS/STAR, which is summarized
as follows.

1. Numerical Model Global Comparisons. As in Section 9.1.1, comparisons are performed against
ECMWF, NCEP/GFS for global Focus Days.

2. Satellite EDR Intercomparisons. As in Section 9.1.1, intercomparisons can be performed
against EDRs from AIRS, OCO-2, MLS for global Focus Days, with AIRS being particularly
well-suited given the same orbit and similarity in the measurements. However, note that the
requirements to validate total column quantities (as opposed to profiles) mitigates the need
for applying averaging kernels in performing intercomparisons.

3. Surface-Based Spectrometer Network Matchup Assessments. These data come primarily from
the Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011), a global net-
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work of ground-based uplooking Fourier transform spectrometers (FTS) that accurately mea-
sure total column abundances of CO2, CO, CH4, and N2O trace gases. The number of stations
collecting data for over a given 24 hour period are on the order of 10. Although sample sizes
are thus limited, these data nevertheless provide valuable independent “spot checks” at col-
located stations for given Focus Days, these supplementing large datasets available from the
model and satellite comparisons stated above.

4. Intensive Field Campaign In Situ Data Assessments. As in Section 9.1.1, these ideally feature
aircraft-based in situ measurements; examples here include NASA’s Atmospheric Tomography
(ATom) mission, FIREX, and HIPPO.

Computation of Total Column Abundances

Both NUCAPS and AIRS perform retrievals of trace gas concentrations carbon monoxide (CO)
and methane (CH4) (as well as H2O) in layer abundance space (molecules/cm2). Carbon dioxide
(CO2), on the other hand, is treated differently (for reasons explained elsewhere in this ATBD) and
is retrieved in volume mixing rations (PPMV). Thus, for CO and CH4, the column assessments are
performed for total column quantities simply by integrating the retrieved layer abundances, whereas
for CO2 the assessments are performed for simply column averages. As in Section 9.1.1, integrated
total column abundances for CO and CH4 are obtained based on Equation (9.5) and computed as

Σx(zs) ≈ FBLNx,Lb δzLb +

Lb−1∑
L

Nx,L δzL , (9.26)

where zs is the surface altitude and the quantities Nx,L δzL are the NUCAPS retrieved layer abun-
dance for gas species x and RTA layer L, Lb is the bottom partial layer, and FBL is the bottom-layer
multiplier factor defined by Equation (9.20).

TCCON Data Conversion

TCCON data are provided in total column dry mole fractions (in ppm), xi, which thus require
conversions to total column abundances (molecules/cm2). The conversion may be performed as
follows using the following formula

Σx(zs) = xi Σd(zs) · 10−6 , (9.27)

where xi is the dry mole fraction for species i and Σd(zs) is the dry column abundance given by

Σd(zs) = 103 · psNA

ḡ Md
− εΣw(zs) , (9.28)

NA being Avogadro’s number and ḡ is the column-mean acceleration due to gravity. The water
vapor column abundance, Σw(zs), may be obtained from various sources (e.g., the NUCAPS AVMP
retrieval or ECMWF output). For proper comparisons against NUCAPS, the TCCON averaging
kernels (Wunch et al., 2011) must be applied to the 100-layer NUCAPS profiles; the specific method-
ology for proper application of the TCCON averaging kernels is the subject of ongoing effort and
will be included in a future revision of this ATBD.
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9.2 SNPP NUCAPS Validation

The operational SNPP NUCAPS algorithm (v1.5, nominal CrIS spectral resolution) formally at-
tained Validated Maturity in September 2014 (Zhou et al., 2016) based upon global analyses detailed
in Nalli et al. (2017a,b) and supported by additional analyses performed by Sun et al. (2017).

9.2.1 Data

JPSS has directly and indirectly funded a dedicated radiosonde program leveraging a number of
collaborating institutions. Dedicated radiosondes are optimally collocated and synchronous with
SNPP overpasses at various selected sites. In addition, we have leveraged GCOS Reference Upper
Air Network (GRUAN) RAOB sites. Collocations of NUCAPS FORs with RAOBs are facilitated
via the NOAA Products Validation System (NPROVS) Reale et al. (2012). Based on this RAOB-
satellite collocation system, an EDR validation archive (VALAR) has been created whereby CrIS
SDR and ATMS temperature data record (TDR) granules in the vicinity of RAOB “anchor points”
are acquired for running offline retrievals, thus allowing validation flexibility (e.g., enables ozone
and trace gas validation) and ongoing algorithm optimization and development.

Figure 9.1 shows JPSS-funded dedicated RAOB sites for the SNPP NUCAPS temperature
and moisture profile validation effort as of this writing through 2016. These include U.S. DOE
Atmospheric Radiation Measurement (ARM) sites (Tobin et al., 2006; Mather and Voyles, 2013);
NOAA Aerosols and Ocean Science Expedition (AEROSE) intensive campaigns (Morris et al.,
2006; Nalli et al., 2011); and the 2015 CalWater ARM Cloud Aerosol Precipitation Experiment
(ACAPEX) (Ralph et al., 2016; Nalli et al., 2016). Additionally, two collaborative land-based
sites-of-opportunity have included the Howard University Beltsville Center for Climate System
Observation (BCCSO) site in Beltsville, Maryland, and combined RAOB and lidar data collected
by The Aerospace Corporation from the Pacific Missile Range Facility (PMRF) site on Kauai,
Hawaii Mollner et al. (2013) and there are three GRUAN sites that fortuitously collocate with
SNPP overpasses Bodeker et al. (2016). Likewise, Figure 9.2 shows ozonesonde sites for the SNPP

SNPP NUCAPS Dedicated/Reference RAOB Sites (2012-2016)
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Figure 9.1: SNPP-dedicated and GRUAN reference RAOB truth sites used for NUCAPS EDR
cal/val (sampling period 2012–2016), including ARM sites, collaborative partner sites (BCCSO
and PMRF), collocated GRUAN reference sites, and ocean-based intensive campaign ship tracks
(AEROSE and CalWater/ACAPEX). From Nalli et al. (2017a).
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NUCAPS IR ozone profile validation, which include Southern Hemisphere Additional Ozonesonde
(SHADOZ) Thompson et al. (2004) and Ozone and Ultraviolet Radiation Data Centre (WOUDC)
network sites, along with unique ship-based SNPP-dedicated ECC ozonesondes launched during
ship-based intensive cal/val campaigns Nalli et al. (2017a), namely NOAA Aerosols and Ocean
Science Expeditions (AEROSE) Morris et al. (2006); Nalli et al. (2011) and the 2015 CalWater
ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Ralph et al. (2016); Nalli et al. (2016).
Figure 9.3 shows active TCCON sites for two global Focus Days, 17 February and 17 July 2015
(boreal winter and summer).

SNPP NUCAPS Cal/Val Ozonesonde Sites (2012-2015)
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Figure 9.2: Ozonesonde truth sites used for SNPP NUCAPS IR ozone profile EDR cal/val (sampling
period 2012–2015), including SHADOZ, WOUDC sites, and SNPP-dedicated ozonesondes launched
from ship-based intensive campaigns. From Nalli et al. (2017b).
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Figure 9.3: TCCON (Wunch et al., 2011) truth sites with collected during two global Focus Days,
15 February and 15 July 2015 used for SNPP NUCAPS trace gas EDR cal/val.
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Figure 9.4: Coarse- and broad-layer statistical uncertainty assessment of the NUCAPS AVTP EDR
(offline v1.5 operational emulation) versus collocated dedicated/reference RAOBs (Figure 9.1) for
retrievals accepted by the quality flag within space-time collocation criteria. The left and right plots
show the RMSE and bias ±1σ results, respectfully. NUCAPS IR+MW (clear to partly cloudy) and
MW-only (cloudy) performances are given in blue and magenta respectively, with collocation sample
size for each coarse layer given in the right margins. From Nalli et al. (2017a).

9.2.2 Result Highlights

Using the in situ data described in Section 9.2.1 as the baseline, coarse-layer and broad-layer
uncertainties (using the methodologies described in §9.1.1) for the operational NUCAPS algorithm
running on nominal CrIS resolution data (Version 1.5) have been determined by Nalli et al. (2017a)
and summarized here. To minimize mismatch error in the statistical analyses, stringent space-
time collocation criteria were employed, along with a geographic zonal and land/sea surface area
weighting scheme has been employed. This latter scheme provides proportionately greater weight to
tropical ocean RAOB collocations and lesser weight to high-latitude land-based collocations, which
is in accordance with the JPSS global requirements.

Global profile error statistics for AVTP and AVMP (Version 1.5) are given in Figures 9.4 and
9.5, respectively. The right plots show the bias statistics given by the coarse-layer means with ±1σ
given by the error bars. The JPSS Level 1 specification requirements are defined in terms of RMS
statistics shown with dashed lines in the left plots. The corresponding broad-layer results are shown
with asterisks. It has been found that both EDRs meet the JPSS requirements for both IR+MW
and MW-only cases, with the only exception being MW-only AVTP for the upper tropospheric
layer (30–1 hPa), which falls somewhat outside of the 1.5 K requirement for this layer. Global
ozone profile EDR statistics, shown in Figure 9.6, are also found to meet the JPSS requirements,
with the only exception being the precision (σ) for the tropospheric broad-layer (surface to 260
hPa), which falls somewhat outside of the 20% requirement for this layer. However, it should be
noted that the CrIS instrument possesses little sensitivity in the troposphere, thereby requiring the
algorithm to relax to the a priori.
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Figure 9.5: As Figure 9.4 except for AVMP.
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Figure 9.6: As Figure 9.4 except for IR ozone profile EDR versus ozonesondes (Figure 9.2); orange-
red lines denote the results from the a priori used in the NUCAPS optimal estimation retrieval.
From Nalli et al. (2017b).
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